COMPENDIUM OF INTERNATIONAL METHODS OF ANALYSIS FOR VINEGARS Determination of total acidity content (Type II)

OIV-MA-VI-01 Determination of total acidity content

Type II method

1. Definition

The total acidity refers to a vinegar whose acidity can be titled in the presence of phenolphthalein in an alcoholic solution, used as indicator.

2. Principle

Neutralization of acids in sample by alkali solution.

3. Reagents

- 3.1. Solution of sodium hydroxide 0.5 M
- 3.2. Indicator phenolphthalein alcoholic solution at 1 g per 100 ml.

In a calibrated flask, capacity 100 ml, dissolve 1 g of phenolphthalein with a sufficient quantity of ethanol at 95% (v/v) and bring up to the line.

4. Equipment and utensils

Standard laboratory equipment.

5. Preparation of sample

Thoroughly mix the sample by stirring and filter if necessary.

6. Technique [1]

In a 250-mL conical flask, add 10 mL of vinegar. Add water, free of carbon dioxide, so that the solution is barely coloured. Add a few drops of the indicator (3.2) and titrate with the sodium hydroxide solution (3.1) until a persistent pink colour is obtained.

Note: Titration may also be monitored by potentiometry, taking into consideration the respective equivalence point.

7. RESULTS

0IV-MA-VI-01 1

COMPENDIUM OF INTERNATIONAL METHODS OF ANALYSIS FOR VINEGARS Determination of total acidity content (Type II)

7.1. Calculation

Considering:

ullet V the volume in ml of the sodium hydroxide solution using in titling.

The total acidity content expressed in grams of acetic acid per l of sample will be given by

3 V.

7.2. Presentation

Round off the results in grams of acetic acid per liter to the nearest decimal.

8. Interlaboratory validation (hitos et al., 2000)

Units: % (m/V)

Sample	r	S _r	RSD _r	R	$\mathbf{S}_{ ext{R}}$	RSD _R	RSD _R (Horwitz)	Horrat Index
1 - 0.17% (m/v)	0.0628	0.022	0.27	0.1570	0.560	0.67	2.90	0.23
2 - 0.17% (m/v)	0.0742	0.026	0.23	0.2127	0.076	0.67	2.78	0.24
3 - 0.08% (m/v)	0.0617	0.022	0.20	0.2197	0.078	0.70	2.78	0.25
4 - 0.07% (m/v)	0.0559	0.020	0.17	0.1543	0.055	0.46	2.75	0.17
5 - 0.08% (m/v)	0.0738	0.026	0.23	0.3544	0.0127	1.13	2.78	0.41

9. Bibliography

- Anonymous, 1993, *Métodos Oficiales de Análisis*, Tomo II, Ministério de Agricultura, Pesca y Alimentación, Madrid, Spain.
- AOAC, 1984, Official Methods of the Ass. Offic. Agric. Chem., 14th edit.,

OIV-MA-VI-01 2

COMPENDIUM OF INTERNATIONAL METHODS OF ANALYSIS FOR VINEGARS Determination of total acidity content (Type II)

Arlington USA.

- Curvelo-Garcia A.S. and Laureano O., 1993. Organization of collaborative studies and comparison of various statistical models, *Commission II Report* (III.A) of the 73rfd General Meeting of the OIV, San Francisco, USA.
- AOF/WHO Commission of Codex Alimentarius, *Methods of analyzing the European regional standard for vinegar*, Alinorm 83/19 and 85/19.
- Hitos P., Pons A., Martin de la Hinojosa, I, Gomez R., Hernandez A. and Muñoz J., 2000. Validation of analysis methods for total, fixed and volatile acidity of non-volatile reducing substances, copper and zinc in wine vinegars, *Green Sheet of OIV No. 115*.

0IV-MA-VI-01 3

 $^{^{\}mbox{\tiny [1]}}$ CPIV has described a method, using the potentiometric titration