

RISOLUZIONE OIV-OENO 620-2020

DOSAGGIO DEGLI ALCHILFENOLI NEI VINI MEDIANTE GASCROMATOGRAFIA E SPETTROMETRIA DI MASSA (GC-MS oppure GC-MS/MS)

L'ASSEMBLEA GENERALE,

VISTO L'ARTICOLO 2, paragrafo 2 b) iv dell'Accordo del 3 aprile 2001 che istituisce l'Organizzazione internazionale della vigna e del vino,

SU PROPOSTA della Sottocommissione "Metodi di analisi",

DECIDE di completare la Raccolta dei metodi internazionali di analisi dei vini e dei mosti con il metodo seguente:

DOSAGGIO DEGLI ALCHILFENOLI NEI VINI MEDIANTE GASCROMATOGRAFIA E SPETTROMETRIA DI MASSA (GC-MS oppure GC-MS/MS)

(Metodo di Tipo IV)

1. Campo d'applicazion

Il metodo qui descritto consente il dosaggio delle molecole seguenti:

	Intervallo studiato
2-terz-butilfenolo	1-100 μg/L
4-terz-butilfenolo	1-100 μg/L
6-metil-2-terz-butilfenolo	1-100 μg/L
4-metil-2-terz-butilfenolo	1-100 μg/L
5-metil-2-terz-butilfenolo	1-100 μg/L
4,6-di-metil-2-terz-butilfenolo	1-100 μg/L

1

Esemplare certificato conforme Parigi, videoconferenza, 12

novembre 2020 II Direttore Generale dell'OIV Segretario dell'Assemblea Generale

2,6-di-terz-butilfenolo

 $1-100 \mu g/L$

2,4-di-terz-butilfenolo

1-100 μg/L

2. Riferimenti normativi

• ISO 78-2: Chimica - Standard,

- ISO 3696: Acqua per uso analitico in laboratorio,
- risoluzione OIV OENO 418-2013.

3. Principio del metodo

Il metodo descrive da un lato l'analisi mediante gascromatografia accoppiata con uno spettrometro di massa (GC-MS) mentre, dall'altro, l'analisi mediante gascromatografia accoppiata con uno spettrometro di massa in tandem (GC-MS/MS).

Il campione viene estratto nello spazio di testa utilizzando la tecnica di microestrazione in fase solida (SPME).

4. Reagenti e soluzioni di lavoro

Nel corso dell'analisi, salvo indicazione contraria, utilizzare unicamente reagenti di qualità analitica riconosciuta e acqua distillata o demineralizzata (oppure acqua di purezza equivalente).

4.1. Reagenti

- 4.1.1. Acqua per uso analitico (norma ISO 3696), di qualità I o II
- 4.1.2. Etanolo assoluto (N. CAS 64-17-5)
- 4.1.3. Cloruro di sodio (N. CAS 7647-14-5)
- 4.1.4. 4-terz-butilfenolo D13 (N. CAS 225386-58-3)

- 4.1.5. 4-terz-butilfenolo (N. CAS 98-54-4)
- 4.1.6. 2-terz-butilfenolo (N. CAS 88-18-6)
- 4.1.7. 4-metil-2-terz-butilfenolo (N. CAS 2409-55-4)
- 4.1.8. 5-metil-2-terz-butilfenolo (N. CAS 88-60-8)
- 4.1.9. 6-metil-2-terz-butilfenolo (N. CAS 2219-82-1)
- 4.1.10. 4,6-di-metil-2-terz-butilfenolo (N. CAS 1879-09-0
- 4.1.11. 2,4-di-terz-butilfenolo (N. CAS 96-76-4)
- 4.1.12. 2,6-di-terz-butilfenolo (N. CAS 128-39-2)

4.2. Soluzioni madre

Per ogni alchilfenolo e per lo standard interno (ad esempio: 4-terz-butilfenolo D13) si preparano singole soluzioni madre a 1 g/L in etanolo.

A partire dalle singole soluzioni madre, si preparano delle soluzioni figlie miscelate in etanolo alle concentrazioni desiderate, in modo da coprire l'intero intervallo di misura.

4.3. Soluzioni di calibrazione

Al fine di assicurare la massima tracciabilità rispetto al Sistema internazionale di unità di misura (SI), l'intervallo di calibrazione deve essere realizzato con soluzioni e polveri pure (elevato grado di purezza) dei diversi alchilfenoli, preparate per pesata o volumetria con tracciabilità metrologica rispetto al SI.

L'intervallo di calibrazione è realizzato con soluzioni al 12% (v/v) di etanolo (4.1.2) nell'intervallo di misura (da 1 a 100 μ g·L-1), ad esempio in 5 punti. Queste soluzioni vengono preparate al momento dell'analisi e devono essere utilizzate subito dopo la preparazione (entro qualche ora).

L'equazione di calibrazione che si ottiene è in genere una funzione quadratica.

5. Strumentazione

Esemplare certificato conforme Parigi, videoconferenza, 12

novembre 2020

- 5.1. Sistema GC-MS dotato di iniettore "split-splitless" e rivelatore a spettrometria di massa o a spettrometria di massa in tandem
- 5.2. Colonna capillare con fase stazionaria apolare, 5% di fenilmetilpolisilossano (ad es. 5MS, 30 m x 0,25 mm x 0,25 μm di film) o equivalente
- 5.3. Micropipette da 100 μ L, 1 mL e 10 mL graduate
- 5.4. Vial per SPME da 20 mL, richiudibili con capsula a vite forata e setto in teflon
- 5.5. Sistema di microestrazione in fase solida (SPME), con fibra rivestita con un film in polidimetilsilossano dello spessore di 100 µm o equivalente

5.6. Bilancia

Questa deve essere tracciabile rispetto al SI e avere una precisione di 0,1 mg.

5.7. Vetreria da laboratorio

La vetreria per la preparazione dei reagenti e delle soluzioni di calibrazione deve essere di classe A

6. Preparazione dei campioni

Nell'ambito del presente documento lo standard interno 4-terz-butilfenolo D13 è utilizzato a titolo esemplificativo; è possibile usare altri standard interni.

Porre 10 mL di vino in un vial per SPME in vetro da 20 mL (5.4) con 2 g circa di NaCl (4.1.3) e 50 μ L di soluzione di 4-terz-butilfenolo D13 (standard interno) a una concentrazione di 5 mg/L (4.1.4).

Chiudere bene il vial con una capsula a vite forata e setto in teflon (5.4).

7. Procedimento GC-MS

Il procedimento fornito è solo a titolo esemplificativo. La tecnica GC-MS utilizzata consente infatti varianti oppure ottimizzazioni necessarie per ogni configurazione della strumentazione.

7.1. Estrazione

Estrazione nello spazio di testa; effettuare la SPME per 20 minuti a 40 °C.

7.2. Iniezione

Effettuare il desorbimento della fibra per 10 minuti nell'iniettore.

Iniettore a 260 °C in modalità splitless.

Flusso di elio: 1 mL/min.

7.3. Parametri del gascromatografo

Colonna: 5MS UI 30 m x 0,25 mm x 0,25 μm

Temperatura della linea di trasferimento: 300 °C

Forno: 50 °C

Poi 10 °C/min fino a 300 °C E quindi a 300 °C per 3 minuti Durata della corsa: 28,0 minuti

7.4. Acquisizione

Temperatura sorgente: 250 °C Temperatura Quad: 150 °C

Acquisizione: SIM

	Durata della corsa (min)	Ioni (Quant.)	Ioni (Qual.)
2-terz-butilfenolo	8.9	135	107-150
4-terz-butilfenolo D13 (IS)	9.1	145	113-163
4-terz-butilfenolo	9.2	135	107-150
6-metil-2-terz-butilfenolo	9.4	149	164-121
4-metil-2-terz-butilfenolo	10.0	149	164-121

novembre 2020

5-metil-2-terz-butilfenolo	10.2	149	164-121
4,6-dimetil-2-terz-butilfenolo	10.5	163	135-178
2,6-di-terz-butilfenolo	11.2	191	206-192
2,4-di-terz-butilfenolo	12.0	191	206-192

Tabella 1: Ioni utilizzati nella spettrometria di massa

8. Procedimento GC-MS/MS

Il procedimento fornito è solo a titolo esemplificativo. La tecnica GC-MS/MS utilizzata consente infatti varianti oppure ottimizzazioni necessarie per ogni configurazione della strumentazione.

8.1. Estrazione

Estrazione nello spazio di testa; effettuare la SPME per 5 minuti a 40 °C.

8.2. Iniezione

Effettuare il desorbimento della fibra per 8 minuti nell'iniettore. Iniettore a 250 °C in modalità pulsed-split con un rapporto 2:1. Flusso di elio: 2 mL/min.

8.3. Parametri del gascromatografo

Colonna: 5MS UI 30 m x 0,25 mm x 0,25 µm o equivalente

Temperatura della linea di trasferimento: 300 °C

Forno: 50 °C

Poi a 25 °C/min fino a 130 °C Segue a 10 °C/min fino a 170 °C

Successivamente a 25 °C/min fino a 300 °C

E quindi a 300 °C per 3 min Durata della corsa: 15,4 min

8.4. Acquisizione

Temperatura sorgente: 250 °C Temperatura Quad: 150 °C

Acquisizione: MRM

	Durata della corsa (min)	Transizioni di quantificazione	Transizioni di qualificazione
2-terz-butilfenolo	5.0	135>107	150>107 & 150>135
4-terz-butilfenolo D13 (IS)	5.1	145>113	163>113 & 163>145
4-terz-butilfenolo	5.2	135>107	150>107 & 150>135
6-metil-2-terz-butilfenolo	5.3	149>121	164>121 & 164>149
4-metil-2-terz-butilfenolo	5.7	149>121	164>121 & 164>149
5-metil-2-terz-butilfenolo	5.8	149>121	164>121 & 164>149
4,6-dimetil-2-terz-butilfenolo	6.1	163>135	178>135 & 178>163
2,6-di-terz-butilfenolo	6.6	206>191	191>163 & 191>57
2,4-di-terz-butilfenolo	7.2	191>57	191>163 & 206>191

Tabella 2: Ioni utilizzati nella spettrometria di massa in tandem

9. Espressione dei risultati

I risultati sono espressi in μg/L.

Allegato 1: Risultati di validazione intern

Le prestazioni sono state misurate con un piano sperimentale intra-laboratorio: 5 materiali che coprono il campo d'applicazione del metodo (1; 5; 25; 50; 100 μ g/L) sono stati costituiti mediante preparazione in una matrice di vino sintetica (soluzione idroalcolica al 12% (v/v), acido tartarico 6 g/L, portata a pH 3,5 con NaOH 1M).

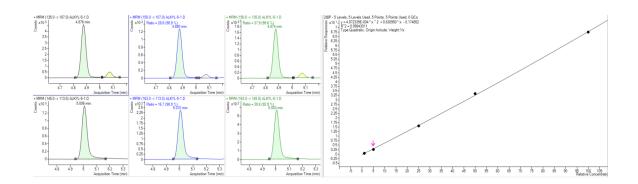
novembre 2020

Ogni materiale è stato analizzato 5 volte in condizioni di precisione intermedia con 2 ripetizioni per ogni analisi. Le analisi sono state effettuate in settembre e ottobre 2018. I calcoli sono stati realizzati conformemente alla risoluzione OIV-OENO 418-2013: "Guida pratica per la convalida, il controllo qualità e lo studio delle incertezze di un metodo di analisi enologico".

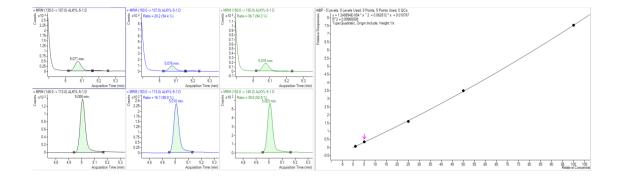
GC-MS	% CV (k=2) Precisione intermedia	CVr (%) Ripetibilità	LOQ validato
2-terz-butilfenolo	6.7%	4.3%	1μg/L
4-terz-butilfenolo	7.3%	5.1%	1μg/L
6-metil-2-terz-butilfenolo	12.1%	10.2%	1μg/L
4-metil-2-terz-butilfenolo	6.0%	4.6%	1μg/L
5-metil-2-terz-butilfenolo	6.4%	4.9%	1μg/L
4,6-dimetil-2-terz-butilfenolo	12.7%	10.5%	1 μg/L
2,6-di-terz-butilfenolo	19.5%	14.6%	1 μg/L
2,4-di-terz-butilfenolo	11.9%	9.9%	1 μg/L

Tabella 3: Dati prestazionali ottenuti con la spettrometria di massa

GC-MS/MS	% CV (k=2) Precisione intermedia	CVr (%) Ripetibilità	LOQ validato
2-terz-butilfenolo	11.3%	10.1%	1 μg/L
4-terz-butilfenolo	10.4%	11.0%	1 μg/L
6-metil-2-terz-butilfenolo	13.9%	13.5%	1 μg/L

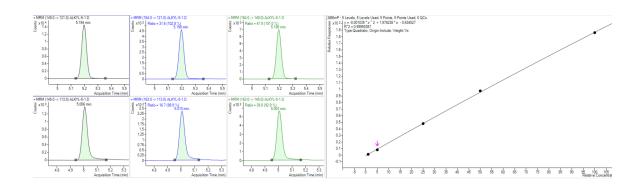


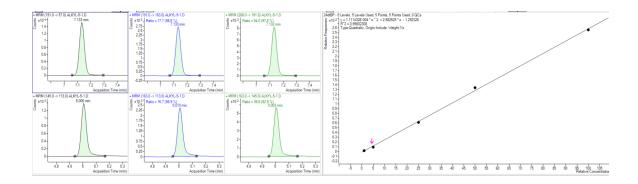
4-metil-2-terz-butilfenolo	11.1%	9.6%	1μg/L
5-metil-2-terz-butilfenolo	12.3%	10.3%	1μg/L
4,6-dimetil-2-terz-butilfenolo	13.4%	12.6%	1μg/L
2,6-di-terz-butilfenolo	16.6%	16.8%	1μg/L
2,4-di-terz-butilfenolo	14.5%	12.4%	1μg/L

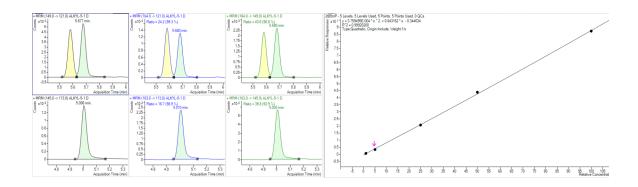

Tabella 4: Dati prestazionali ottenuti con la spettrometria di massa in tandem

Allegato 2: Esempi di cromatogrammi e curve di calibrazione

2-terz-butilfenolo

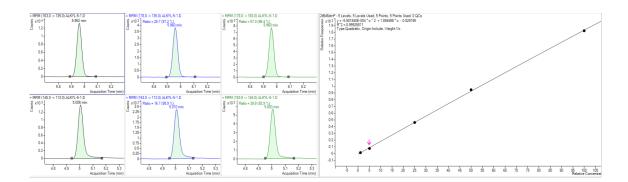

4-terz-butilfenolo


novembre 2020

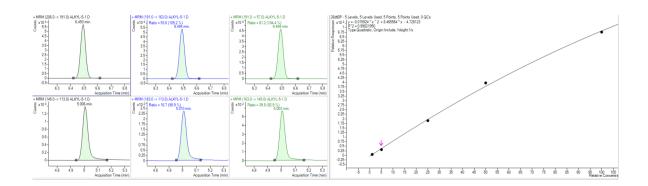

6-metil-2-terz-butilfenolo

4-metil-2-terz-butilfenolo

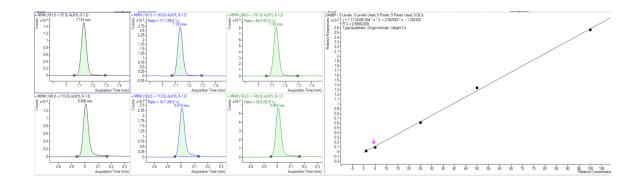
5-metil-2-terz-butilfenolo


4,6-dimetil-2-terz-butilfenolo

II Direttore Generale dell'OIV Segretario dell'Assemblea Generale Pau ROCA


Esemplare certificato conforme Parigi, videoconferenza, 12

novembre 2020



2,6-di-terz-butilfenolo

2,4-di-terz-butilfenolo

