## OIV-MA-AS312-03A Methanol

Type II method

#### 1. Scope of application

This method is applicable to the determination of methanol in wine for concentrations between 50 and 500 mg/L.

### 2. Principle

Methanol is determined in the distillate, to which an internal standard is added, using gas chromatography with a flame ionisation detector (FID).

### 3. Reagents and materials

- 3.1. Type II water, according to ISO standard 3696
- 3.2. Ethanol: purity  $\geq$  96 % (CAS no. 64-17-5)
- 3.3. Hydrogen: minimum specifications: 99.999% purity (CAS no. 1333-74-0)
- 3.4. Helium: minimum specifications: 99.999% purity (CAS no. 7440-59-7)
- 3.5. Methanol: purity ≥ 99 % (CAS no. 67-56-1)
- 3.6. 4-Methyl-2-pentanol (internal standard): purity  $\geq$  98 % (CAS no. 108-11-2). Internal standard used in the validation.

Note 1: Other internal standards can be used, such as:

3-pentanol: purity ≥ 98% (CAS no. 584-02-1)

4-methyl-1-pentanol: purity  $\geq$  98% (CAS no. 626-89-1)

Methyl nonanoate: purity  $\geq$  98% (CAS no. 1731-84-6)

- 3.7. Reference materials: these may be, for example, wines from laboratory proficiency tests.
- 3.8. Preparation of working solutions (by way of example):

3.8.1. Approximately 10% v/v aqueous-alcoholic mixture

This mixture should be as close as possible to the alcohol content of the wine to be analysed. Pour 100 mL of ethanol (3.2) into a 1 L calibrated flask (4.2), make up to volume with demineralised water (3.1) and mix.

3.8.2. 10 g/L Internal standard solution

Using an analytical balance (4.1), weigh approximately 1 g of internal standard (3.6) into a 100 mL calibrated flask (4.3) that contains around 60 mL of 10% ethanol solution

(3.8.1), so as to minimise evaporation of the internal standard. Make up to volume with the ethanol solution (3.8.1) and mix.

3.8.3. 1 g/L Internal standard solution

Add 10 mL of the 10 g/L internal standard solution (3.8.2) using a pipette (4.8) and make up to 100 mL (4.3) using the 10% v/v hydroalcoholic mixture (3.8.1).

3.8.4. 5 g/L Methanol stock solution

Using an analytical balance (4.1), weigh approximately 500 mg of methanol (3.5) into a 100 mL calibrated flask (4.3) that contains about 60 mL of 10% ethanol solution (3.8.1), so as to minimise evaporation of the methanol. Make up to volume with the ethanol solution (3.8.1) and mix.

3.8.5. Working calibration solutions

By way of example, a method for plotting a calibration curve is outlined below.

Each solution should be prepared with the 10% aqueous-alcoholic mixture (3.8.1).

3.8.5.1. 500 mg/L Methanol standard solution

Add 10 mL of the 5 g/L stock solution (3.8.4) to a 100 mL calibrated flask (4.3) using a pipette (4.8) and make up to volume with the 10% v/v ethanol solution (3.8.1).

3.8.5.1.1. 250 mg/L Methanol standard solution

Add 10 mL of the 500 mg/L methanol solution (3.8.5.1) to a 20 mL calibrated flask (4.5) using a pipette (4.8) and make up to volume with the 10% v/v ethanol solution (3.8.1).

3.8.5.1.2. 200 mg/L Methanol standard solution

Add 20 mL of the 500 mg/L methanol solution (3.8.5.1) to a 50 mL calibrated flask (4.4) using a pipette (4.7) and make up to volume with the 10% v/v ethanol solution (3.8.1).

3.8.5.1.3. *150 mg/L Methanol standard solution* 

Add 6 mL of the 500 mg/L methanol solution (3.8.5.1) to a 20 mL calibrated flask (4.5) using a pipette (4.9) and make up to volume with the 10% v/v ethanol solution (3.8.1).

3.8.5.1.4. 100 mg/L Methanol standard solution

Add 4 mL of the 500 mg/L methanol solution (3.8.5.1) to a 20 mL calibrated flask (4.5) using a pipette (4.10) and make up to volume with the 10% v/v ethanol solution (3.8.1). 3.8.5.1.5. 50 mg/L Methanol standard solution

Add 2 mL of the 500 mg/L methanol solution (3.8.5.1) to a 20 mL calibrated flask (4.5) using a pipette (4.11) and make up to volume with the 10% v/v ethanol solution (3.8.1).

### 4. Apparatus

4.1. Analytical balance (1 mg precision)

- 4.2. 1 L Class A calibrated flasks
- 4.3. 100 mL Class A calibrated flasks
- 4.4. 50 mL Class A calibrated flasks
- 4.5. 20 mL Class A calibrated flasks
- 4.6. 10 mL Class A calibrated flasks
- 4.7. 20 mL Class A pipettes with two marks
- 4.8. 10 mL Class A pipettes with two marks
- 4.9. 6 mL Class A pipettes with two marks
- 4.10. 4 mL Class A pipettes with two marks
- 4.11. 2 mL Class A pipettes with two marks
- 4.12. 1 mL Class A pipettes with two marks or 1 mL micropipettes
- 4.13. Temperature-programmable gas chromatograph with a flame ionisation detector and a data processing system capable of calculating areas or measuring peak heights
- 4.14. Fused silica capillary column coated with a Carbowax 20M-type polar stationary phase (for example):
  - Chrompack CP-wax 57 CB, 50 m x 0.32 mm x 0.45  $\mu m$
  - DB-WAX 52, 30 m x 25 mm x 0.2 []m

#### 5. Sample preparation

Sparkling and/or young wines must be pre-degassed, for example, by mixing 200 mL of wine in a 1 L flask. Subsequently, the samples are distilled according to the method for determining alcoholic strength by volume (OIV-MA-AS312-01). The distillation can be carried out without adding calcium hydroxide in this case.

5.1. Addition of internal standard (by way of example)

Pour 10 mL of distillate into a 10 mL calibrated flask (4.6), add 1 mL (4.12) of internal standard solution (3.8.3) and mix.

#### 6. Procedure

The calibration curve standards are treated in the same way as the samples (point 5.1). It is recommended that the aqueous-alcoholic mixture (3.8.1) is injected at the start of

the sequence in order to verify that it does not contain methanol. 6.1. Operating conditions (as a guide): Carrier gas: helium or hydrogen Carrier gas flow: 7 mL/min Injection: split (ratio: 7:50) Injection volume: 1 or 2  $\mu$ L Injector temperature: 200-260 °C Detector temperature: 220-300 °C Temperature programme: from 35 °C (for 2 minutes) to 170 °C, at 7.5 °C/min

#### 7. Calculations

Calculate the concentration of methanol (C<sub>i</sub>), using the following equation:

 $C_i = \frac{C_p}{m} \left( \frac{A_i}{A_p} - b \right)$ 

 $A_i$  – Peak area of methanol

 $A_p$  – Peak area of internal standard

 $C_p$  – Concentration of internal standard

m - Slope of the calibration curve

b - Y-intercept of the calibration curve

### 8. Expression of the results

The concentration of methanol may be expressed in mg/L or in mg/100 mL absolute alcohol; in the latter case, the alcohol content by volume of the wine should be determined.

*Note 2:* mg/100 mL absolute alcohol = mg/L x 10/alcohol content by volume

### 9. Precision

The data from the international interlaboratory test is outlined in Annex A.

### **10. Quality control**

Internal quality control may be carried out using certified reference materials or wines whose characteristics have been determined from a consensus (3.7). These should be prepared as for the samples (point 5). Participation in proficiency tests is

recommended.

#### **11. Report of the results**

The results are expressed to the nearest whole number (in accordance with the uncertainty).

#### 12. Bibliography

Compendium of international methods of wine and must analysis. Method OIV-MA-AS312-01 (Alcoholic strength).

Annex A Statistical results of the interlaboratory test

Design of validation study

The validation study was conducted with 10 samples: 2 white wines, one dry and one sweet, 2 red wines, one of which was oaked, and 1 fortified wine (Port), including blind duplicates, according to OIV recommendations. The approximate concentration of methanol is shown in the following table.

| Sample             | White<br>wine<br>Dry | White<br>wine<br>Sweet | Red wine | Red wine<br>oaked | Fortified<br>wine<br>port |
|--------------------|----------------------|------------------------|----------|-------------------|---------------------------|
| Methanol<br>(mg/L) | 50                   | 150*                   | 270      | 400*              | 120                       |

(\*) In this particular indicated case, methanol was added to the wine to cover a greater range of concentrations. The wine was then mixed, stabilised and bottled.

Participating laboratories:

Samples were sent to 17 laboratories in 9 different countries.

Laboratorios Agroalimentarios, Madrid (Spain)

Estación de Viticultura y Enología de Galicia, EVEGA (Spain)

Estació de Viticultura i Enologia de Vilafranca del Penedès, (Spain)

Estación Enológica de Haro, La Rioja (Spain)

Estación de Viticultura y Enología de Galicia (Spain)

Lab. Bordeaux, Service Commun des Lab., Pessac (France)

Laboratoire d'Ile-de-France, Paris (France)

Laboratoires Inter Rhône (France)

Comité Interprof. du Vin de Champagne (CIVC) (France)

Bfr-Bundesinst. f. Risikobewertung (Germany)

Landesuntersuchungsamt Mainz (Germany)

Instituto Nacional de Vitivinicultura, Mendoza (Argentina)

ALKO Inc., Alcohol Control Lab. (ACL) (Finland)

Instituto dos Vinhos do Douro e do Porto (Portugal)

Collaborative study on methanol

| Laboratory<br>code | Dry white |       | Sweet white |        | Red    |        | Oaked red |        | Port   |        |
|--------------------|-----------|-------|-------------|--------|--------|--------|-----------|--------|--------|--------|
|                    | A         | G     | в           | н      | с      | I      | D         | J      | Е      | к      |
| A                  | 39.99     | 38.13 | 127.42      | 136.25 | 144.80 | 145.71 | 496.53    | 513.00 | 192.13 | 219.39 |
| В                  | 41.20     | 40.90 | 157.60      | 160.50 | 150.40 | 146.90 | 484.90    | 477.80 | 222.40 | 219.60 |
| C                  | 36.80     | 35.60 | 133.50      | 129.20 | 119.10 | 134.10 | 454.10    | 478.40 | 197.00 | 174.80 |
| D                  | 36.00     | 39.60 | 177.40      | 145.50 | 160.80 | 138.00 | 302.00    | 494.50 | 216.10 | 248.50 |
| E                  | 68.00     | 70.00 | 163.00      | 169.00 | 178.00 | 177.00 | 503.00    | 495.50 | 225.00 | 227.00 |
| F                  | 37.00     | 37.10 | 148.30      | 148.20 | 143.40 | 142.40 | 484.10    | 474.00 | 206.30 | 206.90 |
| G                  | 41.40     | 42.30 | 152.60      | 152.40 | 149.70 | 150.50 | 489.60    | 491.10 | 216.60 | 217.20 |
| Н                  | 36.80     | 32.40 | 140.80      | 129.10 | 128.00 | 137.70 | 440.60    | 429.30 | 187.50 | 192.80 |
| I                  | 42.90     | 43.30 | 153.50      | 155.50 | 139.70 | 147.40 | 468.30    | 456.10 | 225.30 | 225.60 |
| J                  | 40.90     | 40.60 | 155.50      | 154.60 | 148.50 | 149.10 | 496.40    | 499.80 | 217.10 | 217.00 |
| K                  | 39.30     | 36.20 | 103.10      | 143.10 | 131.90 | 115.90 | 437.90    | 334.00 | 156.10 | 172.60 |
| L                  | 35.00     | 39.00 | 164.00      | 167.00 | 157.00 | 160.00 | 492.00    | 508.00 | 249.00 | 220.00 |
| M                  | 43.60     | 43.40 | 157.30      | 154.90 | 155.50 | 158.90 | 506.80    | 496.10 | 217.70 | 219.50 |
| N                  | 34.20     | 33.60 | 126.50      | 125.70 | 125.90 | 133.60 | 429.10    | 429.00 | 192.10 | 188.90 |
| 0                  | 34.00     | 35.70 | 149.00      | 154.80 | 144.20 | 141.80 | 482.80    | 473.60 | 210.40 | 218.10 |
| Р                  | 44.70     | 43.70 | 151.60      | 146.90 | 140.70 | 147.60 | 451.20    | 472.80 | 205.40 | 205.80 |
| 0                  | 40.70     | 38.80 | 153.00      | 149.80 | 158.20 | 153.40 | 498.20    | 497.50 | 225.50 | 217.20 |

Czech Agriculture and Food Inspection Authority (CAFIA), Brno (Czech Republic) CZ National Food Safety Office, Directorate of Oenology and Alcoholic Beverages (NÉBIH BAII), Budapest (Hungary)

Lehr- und Forschungszentrum, Klosterneuburg (Austria)

| Indicators                         | Dry white | Sweet white | Red       | Oaked red | Port      |
|------------------------------------|-----------|-------------|-----------|-----------|-----------|
| Number of accepted laboratories    | 16        | 15          | 17        | 15        | 17        |
| Number of repetitions              | 2         | 2           | 2         | 2         | 2         |
| Minimum                            | 32.40     | 125.70      | 115.90    | 429.00    | 156.10    |
| Maximum                            | 44.70     | 169.00      | 178.00    | 513.00    | 249.00    |
| Repeatability variance sr2         | 2.2466    | 12.1330     | 39.0164   | 76.3567   | 105.3390  |
| Intergroup variance sr2            | 9.61893   | 146.39249   | 151.90249 | 535.61827 | 292.14282 |
| Reproducibility variance sr2       | 11.8655   | 158.5254    | 190.9189  | 611.9750  | 397.4819  |
| Overall mean                       | 38.90     | 148.92      | 145.76    | 478.97    | 210.37    |
| Repeatability standard deviation   | 1.50      | 3.48        | 6.25      | 8.74      | 10.26     |
| r Limit                            | 4.242     | 9.858       | 17.677    | 24.729    | 29.046    |
| Repeatability CV                   | 3.9       | 2.3         | 4.3       | 1.8       | 4.9       |
| Reproducibility standard deviation | 3.44      | 12.59       | 13.82     | 24.74     | 19.94     |
| R Limit                            | 9.748     | 35.632      | 39.103    | 70.009    | 56.422    |
| Reproducibility CV                 | 8.9       | 8.5         | 9.5       | 5.2       | 9.5       |
| Horwitz RSD                        | 6.09      | 4.97        | 4.99      | 4.17      | 4.72      |
| <u>Horrat</u> r                    | 0.6       | 0.5         | 0.9       | 0.4       | 1.0       |
| Horwitz RSD                        | 9.22      | 7.53        | 7.56      | 6.32      | 7.15      |
| Horrat R                           | 1.0       | 1.1         | 1.3       | 0.8       | 1.3       |

According to the Horrat, the repeatability and reproductibility of the method are acceptable

|                 | Z-score           | Z-score             | Z-score  | Z-score           | Z-score |  |
|-----------------|-------------------|---------------------|----------|-------------------|---------|--|
| Laboratory code | Dry white<br>wine | Sweet white<br>wine | Red wine | Oaked red<br>wine | Port    |  |
| Α               | 0.05              | -1.36               | -0.04    | 1.04              | -0.23   |  |
| В               | 0.62              | 0.80                | 0.21     | 0.10              | 0.53    |  |
| С               | -0.78             | -1.40               | -1.39    | -0.51             | -1.23   |  |
| D               | -0.32             | 1.00                | 0.26     | -3.26             | 1.10    |  |
| E               | 8.74              | 1.36                | 2.30     | 0.81              | 0.78    |  |
| F               | -0.54             | -0.05               | -0.21    | 0.00              | -0.19   |  |
| G               | 0.86              | 0.28                | 0.31     | 0.46              | 0.33    |  |
| Н               | -1.25             | -1.11               | -0.93    | -1.78             | -1.01   |  |
| I               | 1.22              | 0.44                | -0.16    | -0.68             | 0.76    |  |
| J               | 0.54              | 0.49                | 0.22     | 0.77              | 0.34    |  |
| K               | -0.33             | -2.05               | -1.58    | -3.76             | -2.31   |  |
| L               | -0.55             | 1.32                | 0.92     | 0.85              | 1.21    |  |
| М               | 1.34              | 0.57                | 0.83     | 0.91              | 0.41    |  |
| N               | -1.45             | -1.81               | -1.16    | -2.02             | -1.00   |  |
| 0               | -1.18             | 0.24                | -0.20    | -0.03             | 0.19    |  |
| Р               | 1.54              | 0.03                | -0.12    | -0.69             | -0.24   |  |
| Q               | 0.25              | 0.20                | 0.73     | 0.76              | 0.55    |  |

Z-scores obtained by the participants of the 85 Z-scores, 3 are unsatisfactory and 4 are questionable