#### Method OIV-MA-AS312-01A

Type I methods

1

# Alcoholic strength by volume

(Resolution Oeno 377/2009)

#### 1. DEFINITION

The alcoholic strength by volume is the number of liters of ethanol contained in 100 liters of wine, both volumes being measured at a temperature of 20°C. It is expressed by the symbol '% vol.

*Note:* Homologues of ethanol, together with the ethanol and esters of ethanol homologues are included in the alcoholic strength since they occur in the distillate.

#### 2. PRINCIPLE OF METHODS

- 2.1. *Distillation of wine* made alkaline by a suspension of calcium hydroxide. Measurement of the alcoholic strength of the distillate:
- 2.2. Type I methods:
  - A. Measurement of the alcoholic strength of the distillate with a pycnometer
  - B. Measurement of the alcoholic strength of wine by electronic densimetry using frequency oscillator.
  - C. Measurement of the alcoholic strength of wine by densimetry using hydrostatic balance.

OIV-MA-AS312-01A : R2009

# 3. Method of obtaining distillate

### 3.1. Apparatus

- 3.1.1 Distillation apparatus, consisting of:
- a round-bottomed 1-liter flask with ground-glass joints.
- a rectifying column about 20 cm in height or any similar condenser.
- a source of heat; any pyrolysis of extracted matter must be prevented by a suitable arrangement.
- a condenser terminated by a drawn-out tube taking the distillate to the bottom of a graduated receiving flask containing several mL of water.
- 3.1.2 Steam distillation apparatus consisting of:
- a steam generator
- a steam pipe
- a rectifying column
- a condenser.

Any type of distillation or steam distillation apparatus may be used provided that it satisfies the following test:

Distil an ethanol-water mixture with an alcoholic strength of 10% vol. five times in succession. The distillate should have an alcoholic strength of at least 9.9% vol. after the fifth distillation; i.e. the loss of alcohol during each distillation should not be more than 0.02% vol.

# 3.2Reagent

Suspension of calcium hydroxide, 2 M

Obtain by carefully pouring 1 liter of water at 60 to 70°C on to 120 g of quicklime, CaO.

#### 3.3. Preparation of sample

Remove the bulk of any carbon dioxide from young and sparkling wines by stirring 250 to 300 mL of the wine in a 1000 mL flask.

# 3.4. Procedure

Measure out 200 mL of the wine using a volumetric flask. Record the temperature of the wine.

Transfer the wine to the distillation flask and introduce the steam-pipe of the steam distillation apparatus. Rinse the volumetric flask four times with successive 5 mL washings of water added to the flask or the steam-pipe. Add

10 mL of calcium hydroxide. 2 mol/L. and several pieces of inert porous material (pumice etc).

Collect the distillate in the 200 mL graduated flask used to measure the wine. Collect a volume of about three-quarters of the initial volume if distillation is

used and a volume of 198 to 199 mL of distillate if steam distillation is used. Make up to 200 mL with distilled water, keeping the distillate at a temperature within 2°C of the initial temperature.

Mix carefully, using a circular motion.

*Note:* In the case of wines containing particularly large concentrations of ammonium ions, the distillate may be redistilled under the conditions described above, but replacing the suspension of calcium hydroxide with 1 mL sulfuric acid diluted 10/100.

### Precautionary safety measures

Respect the safety guidelines for the usage of distillation apparatuses, the manipulation of hydro-alcoholic and cleaning solutions.

OIV-MA-AS312-01A : R2009 3

# 4.A. Measurement of the alcoholic strength of the distillate using a pycnometer

(Method A2/1978 – Resolution 377/2009)

### 4.1. Apparatus

Use the standardized pycnometer as described in the chapter *Density and specific gravity* (Annex, chapter 1).

#### 4.2. Procedure

Measure the apparent density of the distillate (3.4) at t °C as described in the chapter *Density and specific gravity* (Annex. chapter 1. sections 4.3.1 and 4.3.2). Let this density be  $\rho_t$ .

### 4.3. Expression of results

#### 4.3.1 Method of calculation

Find the alcoholic strength at 20 °C using Table I. In the horizontal line of this table corresponding to the temperature T (expressed as a whole number) immediately below t °C, find the smallest density greater than  $\rho_t$ . Use the tabular difference just below this density to calculate the density  $\rho$  at this temperature T.

On the line of the temperature T, find the density  $\rho'$  immediately above  $\rho$  and calculate the difference between the densities  $\rho$  and  $\rho'$ . Divide this difference by the tabular difference just to the right of the density  $\rho'$ . The quotient gives the decimal part of the alcoholic strength, while the whole number part of this strength is shown at the head of the column in which the density  $\rho'$  is located. An example of the calculation of an alcoholic strength is given in Annex I of this chapter.

*Note:* This temperature correction has been incorporated in a computer program and might possibly be carried out automatically.

4.3.2 Repeatability r: r = 0.10 % vol.

4.3.3 Reproducibility R:

R = 0.19 % vol.

#### ANNEX I

### Example of the calculation of the alcoholic strength of a wine

# I. Measurement by pycnometer on a twin-pan balance

The constants of the pycnometer have been determined and calculated as described in chapter I. *Density and specific gravity*, section 6.1.1.

#### **Calculations**

# **Example**

1. Weighing of pycnometer filled with distillate:

Tare = pycnometer + distillate at 
$$t$$
 °C+ $p$ " 
$$\begin{cases} t$$
 °C = 18.90 °C \\ t °C corrected = 18.70 °C  $p$ " = 2.8074 §

$$p + m - p'' = \text{mass of distillate at } t \,^{\circ}\text{C}$$

Apparent density at t °C:

$$\rho_t = \frac{p + m - p''}{\text{volume of pycnometer at } 20^\circ C} \qquad \qquad \left\{ \rho_{18.7^\circ} = \frac{102.2624}{104.0229} = 0.983076 \right.$$

2. Calculation of alcoholic strength:

Refer to the table of apparent densities of water-alcohol mixtures at different temperatures, as indicated above On the line 18 °C of the table of apparent densities, {the smallest density greater than the observed density {of 0.983076 is 0.98398 in column 11% vol.

The decimal portion of the % vol. of alcoholic strength is

$$75/114 = 0.65$$

The alcoholic strength is:

11.65 % vol.

# II. Measurement by pycnometer on a single pan balance

The constants of the pycnometer have been determined and calculated as described in chapter 1. *Density and specific gravity*, section 6.2.1

#### **Calculations**

### 1. Weighing of the pycnometer filled with distillate:

Weight of tare bottle at the time of

measurement in grams:  $T_1 = 171.9178$ 

Pycnometer filled with distillate

at 20.50 °C in grams:  $P_2 = 167.8438$ 

Variation in the buoyancy of air: dT = 171.9178 - 171.9160

=+0.0018

Mass of the distillate at 20.50 °C:  $L_t = 167.8438 - (67.6695 + 0.0018)$ 

= 100.1725

Apparent density of the distillate:  $\rho_{20.50^{\circ}} = \frac{100.1725}{101.8194} = 0.983825$ 

### 2. Calculation of alcoholic strength:

Refer to the table of apparent densities of water-alcohol mixtures at different temperatures, as indicated above: On the line 20°C of the table of apparent {densities, the smallest density greater than {observed density of 0.983825 is 0.98471 in {column 10% vol.

The density at 20°C is:  $(98382.5 + 0.5 \times 24) \cdot 10^{-5} = 0.983945$ (0.98471 - 0.983945 = 0.000765)

The decimal portion of the % vol. 76.5/119 = 0.64

The alcoholic strength is:

10.64% vol.

ANNEX II

# Formula from which tables of alcoholic strengths of ethanol-water mixtures are calculated

The density " $\rho$ " in kilograms per meter cubed (kg/m<sup>3</sup>) of an ethanol-water mixture at temperature *t* in degrees Celsius is given by the formula below as a function of:

- the alcoholic strength by weight p expressed as a decimal; \*
- the temperature t in °C (EIPT 68);
- the numerical coefficients below.

The formula is valid for temperatures between -20 °C and +40 °C.

$$\begin{split} \rho &= A_1 + \sum_{k=2}^{12} A_k \ p^{k-1} + \sum_{k=1}^{6} B_k^{\left(t - 20^{\circ}C\right)^k} \\ &+ \sum_{i=1}^{n} \sum_{k=1}^{m} C_{i,k} \ p^{k\left(t - 20^{\circ}C\right)^i} \end{split}$$

$$n = 5$$
 $m_1 = 11$ 
 $m_2 = 10$ 
 $m_3 = 9$ 
 $m_4 = 4$ 
 $m_5 = 2$ 

### Numerical coefficients in the formula

| $\mathbf{A}_{k}$ $\mathbf{kg/m}^{3}$ | $\mathbf{B}_k$                                            |  |  |
|--------------------------------------|-----------------------------------------------------------|--|--|
| 1 9.982 012 300 · 10 <sup>2</sup>    | - 2.061 851 3 · 10 <sup>-1</sup> kg/(m <sup>3</sup> · °C) |  |  |

<sup>\*</sup> For example, for an alcoholic strength of 12 % by weight, q = 0.12

.

| $2 - 1.929769495 \cdot 10^{2}$         | - $5.268\ 254\ 2 \cdot 10^{-3}\ \text{kg/(m}^3 \cdot {}^{\circ}\text{C}^2)$ |
|----------------------------------------|-----------------------------------------------------------------------------|
| $3 	 3.891 	 238 	 958 	 \cdot 	 10^2$ | $3.613\ 001\ 3 \cdot 10^{-5}\ \text{kg/(m}^3 \cdot {}^{\circ}\text{C}^3)$   |
| $4 - 1.668103923 \cdot 10^3$           | $- 3.895 770 2 \cdot 10^{-7} \text{ kg/(m}^3 \cdot {}^{\circ}\text{C}^4)$   |
| $5 	 1.352 215 441 \cdot 10^4$         | $7.169\ 354\ 0\cdot 10^{-9}\ kg/(m^3\cdot {}^{\circ}C^5)$                   |
| $6 - 8.829278388 \cdot 10^4$           | $-9.9739231 \cdot 10^{-11} \text{ kg/(m}^3 \cdot {}^{\circ}\text{C}^6)$     |
| 7 $3.062874042 \cdot 10^5$             |                                                                             |
| $8 - 6.138381234 \cdot 10^5$           |                                                                             |
| 9 $7.470\ 172\ 998 \cdot 10^5$         |                                                                             |
| $1 - 5.478461354 \cdot 10^5$           |                                                                             |
| 1 2.234 460 334 • $10^5$               |                                                                             |
| $1 - 3.903\ 285\ 426 \cdot 10^4$       |                                                                             |

| $k$ $C_{1.k}$                              | $\mathbb{C}_{2.k}$                         |
|--------------------------------------------|--------------------------------------------|
| $kg/(m^3 \cdot {}^{\circ}C)$               | $k g/(m^3 \cdot {}^{\circ}C2)$             |
| 1 1.693 443 461530 087 • 10 <sup>-1</sup>  | - 1. 193 013 005 057 010 ·                 |
| $2 - 1.046914743455169 \cdot 10^{1}$       | 2.517 399 633 803 46 1 •                   |
| $3 	 7.196 353 469 546 523 \cdot 10^1$     | - 2.170 575 700 536 993                    |
| $4 - 7.047478054272792 \cdot 10^2$         | $1.353\ 034\ 988\ 843\ 029\ \cdot\ 10^{1}$ |
| $5 \qquad 3.924090430035045\cdot10^3$      | $-$ 5.029 988 758 547 014 • 10 $^{1}$      |
| $6 - 1.210 164 659 068 747 \cdot 10^4$     | $1.096\ 355\ 666\ 577\ 570\ \cdot\ 10^2$   |
| 7 2.248 646 550 400 788 · 10 <sup>4</sup>  | $- 1.422753946421155 \cdot 10^{2}$         |
| $8 - 2.605\ 562\ 982\ 188\ 164 \cdot 10^4$ | $1.080\ 435\ 942\ 856\ 230\ \cdot\ 10^2$   |
| 9 1.852 373 922 069 467 · 10 <sup>4</sup>  | $-4.414\ 153\ 236\ 817\ 392\cdot\ 10^{1}$  |
| $1 - 7.420\ 201433\ 430\ 137 \cdot 10^3$   | 7.442 971 530 188 783                      |
| 1 1.285 617 841 998 974 • $10^3$           |                                            |

| k C3.k                                     | C4.k                          | C5.k                          |
|--------------------------------------------|-------------------------------|-------------------------------|
| $kg/(m^3 \cdot {}^{\circ}C3)$              | $kg/(m^3 \cdot {}^{\circ}C4)$ | $kg/(m^3 \cdot {}^{\circ}C5)$ |
| $1 - 6.802995733503803 \cdot 10^{-4}$      | 4.075 376 675 622 027 •       | - 2.788 074 354 782 409 •     |
| 2 1.876 837 790 289 664 • 10 <sup>-2</sup> | - 8.763 058 573 471 110 ·     | 1.345 612 883493 354 •        |
| $3 - 2.002561813734156 \cdot 10^{-1}$      | 6.515 031 360 099 368 •       |                               |
| 4 1.022 992 966 719 220                    | - 1.515 784 836 987 210 ·     |                               |
| 5 _ 2.895 696 483 903 638                  |                               |                               |
| 6 4.810 060 584 300 675                    |                               |                               |
| 7 - 4.672 147 440 794 683                  |                               |                               |
| 8 2.458 043 105 903 461                    |                               |                               |
| $9 - 5.411 227 621 436 812 \cdot 10^{-1}$  |                               |                               |

# 4. B. Measurement of the alcoholic strength of wine by electronic densimetry using frequency oscillator (Resolution Oeno 8/2000 – 377/2009)

OIV-MA-AS312-01A: R2009

#### 1. Measurement method

#### 1.1. Strength and introduction

The alcoholic strength by volume of wine must be measured before being commercialised mainly in order to conform to labelling rules.

The alcoholic strength by volume is equal to the number of litres of ethanol contained in 100 litres of wine; these volumes are both measured at 20 °C. The symbol is "% vol.".

#### 1.2. Precautionary safety measures

Respect the safety guidelines for the usage of distillation apparatuses, the manipulation of hydro-alcoholic and cleaning solutions.

# 1.3. Object and field of application

The method of measurement described is electronic densimetry using a frequency oscillator.

In reference to the provision of the rules in the existing law, the trial temperature is stopped at 20 °C.

# 1.4. Principle and definitions

The principle of the method consists firstly of distilling the wine volume by volume. The distillation procedure is described in the Compendium. This distillation enables the elimination of non-volatile substances. The ethanol counter parts in addition to ethanol and the ethanol counter parts involved in esters are included in the alcoholic strength since they are present in the distillate

The distillate density of the distillate is measured. The density of a liquid at a given temperature is equal to the ratio of its density to its volume.

 $\rho = m / V$ , for a wine, it is expressed as g/ml

For hydro-alcoholic solutions such as distillates, given the known temperature, the graphs correspond to the alcoholic strength by volume (OIV, 1990). This alcoholic strength corresponds to that of wine (distillation of volume to volume).

In the present method the distillate density is measured by electronic densimetry using a frequency oscillator. The principle consists of measuring the period of oscillation of a tube containing the sample undergoing an electromagnetic stimulation. The density is thus calculated and is linked to the period of oscillation by the following formula:

$$p = T^2 \times \left(\frac{C}{4\pi^2 V}\right) - \left(\frac{M}{V}\right) \tag{1}$$

 $\rho$  = density of sample

T = period of induced vibration

M = mass of empty tube

C = spring constant

V = volume of vibrating sample

This relation is in the form of,  $\rho = A T^2 - B$  (2), There is a linear relationship between density and the period squared. The A and B constants specific to each oscillator are estimated by measuring the period of fluids of the known density.

#### 1.5. Reagents and products

#### 1.5.1 Reference fluids

Two reference fluids are used to adjust the densimetry. The densities of reference fluids must encompass the densities of the distillates to be measured. A spread between the densities between reference fluids above 0.01000 g/ml is recommended. The density must be known with an uncertainty under  $\pm 0.00005$  g/ml, for a temperature of  $20.00 \pm 0.05$  °C.

The measuring of alcoholic strength by volume of wine by electronic densimetry of reference fluids:

- dry air (unpolluted),
- double distilled water or of an equivalent analytical purity,
- hydro alcoholic solution of density determined by pycometry (reference method),
- solutions connected to national standards of viscosity under 2 mm<sup>2</sup>/s.

#### 1.5.2 Cleaning and drying products

- detergents, acids,
- organic solvents: ethanol 96% Vol., pure acetone.

# 1.6. Apparatus

1.6.1 Electronic densimetry by frequency oscillator

Electronic densimetry contains the following elements:

- a measuring cell containing a measurement tube and a temperature controlled enclosure,
- a system for setting up an oscillation tube and measurement of the period of oscillation,
- a timer,
- a digital display and possibly a calculator.

The densimetry on a perfectly stable support isolated from all vibrations.

### 1.6.2 Temperature control of measuring cell

The measurement tube is located in the temperature-controlled enclosure. Temperature stability must be better than  $\pm -0.02$  °C.

It is necessary to control the temperature of the measuring cell when the densimetry makes this possible, because this strongly influences .the indication results. Density of this hydro alcoholic solution with an alcoholic strength by volume of 10% Vol., and is at 0.98471 g/ml at 20°C and at 0.98447 g/ml at 21°C or a spread of 0.00024 g/ml.

The trial temperature is stopped at  $20^{\circ}$ C. The temperature is taken at the cell level and done with a resolution thermometer  $0.01^{\circ}$ C and connected to national standards. This must enable a temperature measurement with an uncertainty of under +/-  $0.07^{\circ}$ C.

### 1.6.3 Calibration of the apparatus

The apparatus must be calibrated before using for the first time, then every six months or is the verification is not satisfactory. The objective is to use two reference fluids to calculate the constants A and B (cf. (2)). To carry out the calibration refer to the user's manual of the apparatus. In principle, this calibration is carried out with dry air (take into account the atmospheric pressure) and very pure water (double distilled and/or very high micro filtered resistance, for example > 18 M  $\Omega$ 

# 1.6.4 Calibration verification

In order to verify the calibration we measure the density of the reference fluids.

- Every day, a density check of the air is carried out. A difference between the theoretical density and the observed density of more than 0.00008 g/ml may indicate that the tube is clogged. In that case, it must be cleaned. After cleaning, verify the air density again. If the verification is not conclusive adjust the apparatus.

- Check the density of water, if the difference between the theoretical density and the density observed is greater than 0.00008 g/ml, adjust the apparatus.
- If the verification of cell temperature is difficult, it is possible to directly check hydro alcoholic density of the alcoholic strength by volume compared to the distillates analysed.

#### 1.6.5 Check

When the difference between the theoretical density of the reference solution (known with an uncertainty of  $\pm 0.00005$  g/ml) and the measurement is above 0.00008 g/ml the temperature of the cell must be taken.

#### 1.7. Sampling and preparation of samples

(Cf. Compendium if International methods of wine and musts 1990, page 59, Obtaining distillate)

#### 1.8. Operating procedure

After obtaining a distillate, (OIV, 1990) we measure the density or the alcoholic strength by volume by densimetry.

The operator must ensure the stability and the temperature of the measuring cell. The distillate in the densimetry cell must not contain air bubble and must be homogeneous. If there is an available lighting system, turn off quickly after checking because the heat generated by the lamp can influence the measuring temperature.

If the apparatus only provides the period, density can be calculated by the A and B constants (cf. A.4 c). If the apparatus does not provide the alcoholic strength by volume directly, we can obtain the alcoholic strength by volume using the (OIV, 1990) tables if we know the density.

# 1.9. Expression of results

The alcoholic strength by volume is obtained from the distillate. This is expressed as "% vol.".

If the temperature conditions are not respected, a correction must be made to express the temperature at 20°C. The result is quoted to two decimal places

#### 1.10. Comments

The volume introduced into the cell must be sufficient enough to avoid possible contamination caused from the previous sample. It is thus necessary to carry out two testing. If this does not provide results included in the repeatability limits, a

third testing may be necessary. In general, results from the last two testing are homogeneous and we then eliminate the first factor.

### 1.11 Reliability

For alcoholic strength by volume samples between 4 to 18% Vol.

Repeatability (r) = 0.067 (% vol.),

Reproducibility (R) = 0.0454 + 0.0105 x alcoholic strength by volume.

# 2. Interlaboratory Tests. Reliability and accuracy on additions

#### 2.1. Samples

The samples used for this joint study are described in Table 1.

**Table 1: Samples for joint study** 

| Nu<br>m | Nature                                                       | Approx alcoholic strength by volume (% vol.) |
|---------|--------------------------------------------------------------|----------------------------------------------|
| C0      | Cider (filtered through membrane to remove CO <sub>2</sub> ) | 5                                            |
| V0      | Filtered wine                                                | 10                                           |
| V1      | Filtered wine then doped                                     | 11                                           |
| V2      | Filtered wine then doped                                     | 12                                           |
| V3      | Filtered wine then doped                                     | 13                                           |
| P0      | Liqueur wine                                                 | 16                                           |

All samples are homogenised before filling the bottles to be sent to the participants. For wine, 40 litres of wine are homogenised before sending and carrying out the additions

For the additions, pour absolute ethanol into a 5 litre volumetric flask and then fill up to the line with filtered wine. This operation is repeated two times. The volumes of ethanol are respectively 50, 100 and 150 ml for the V1, V2 and V3 samples.

### 2.2. Participating laboratories

The participating laboratories in the joint study are outlined in Table 2.

| Laboratory | Zip Code | City | Contact |
|------------|----------|------|---------|
|------------|----------|------|---------|

| ALKO Group LTD       | FIN-00101 | Helsinki              | Monsieur Lehtonen  |
|----------------------|-----------|-----------------------|--------------------|
| Bénédictine          | 76400     | Fécamp                | Madame Pillon      |
| Casanis              | 18881     | Gemenos               | Madame Cozon       |
| CIVC                 | 51200     | Epernay               | Monsieur Tusseau   |
| Cointreau            | 49181     | St Barthélémy d'Anjou | Madame Guerin      |
| Courvoisier          | 16200     | Jarnac                | Monsieur Lavergne  |
| Hennessy             | 16100     | Cognac                | Monsieur Calvo     |
| IDAC                 | 44120     | Vertou                | Madame Mars        |
| Laboratoire Gendrot  | 33000     | Bordeaux              | Madame Gubbiotti   |
| Martell              | 16100     | Cognac                | Monsieur Barboteau |
| Ricard               | 94320     | Thiais                | Monsieur Boulanger |
| SOEC Martin Vialatte | 51319     | Epernay               | Madame Bertemes    |

In order not to introduce a methodological angle, the *Station Viticole du Bureau National Interprofessionnel du Cognac*, the joint study organiser, will not be taken into account.

# 2.3. Analyses

The C0 and P0 products are distilled two times, the V0, V1, V2 and V3 products three times. Three alcoholic strength by volume tests were done for each distillate. The results were carried over to the results table.

### 2.4. Results

The second testing (out of the three carried out) is kept of the accuracy study (Table 3).

Table 3: Results (second testing per distillate) (% vol.)

| Laboratory | C0             | V0                      | V1                         | V2                         | V3                         | P0               |
|------------|----------------|-------------------------|----------------------------|----------------------------|----------------------------|------------------|
| 1          | 6,020<br>5,970 | 9,500<br>9,470<br>9,450 | 10,390<br>10,380<br>10,340 | 11,290<br>11,260<br>11,260 | 12,100<br>12,150<br>12,150 | 17,080<br>17,080 |
| 2          | 6,040<br>6,040 | 9,500<br>9,500<br>9,510 | 10,990<br>10,390<br>10,400 | 11,270<br>11,280<br>11,290 | 12,210<br>12,210<br>12,200 | 17,050<br>17,050 |
|            | 5,960          | 9,460                   | 10,350                     | 11,280                     | 12,170                     | 17,190           |

14

OIV-MA-AS312-01A: R2009

| 3  | 5,910    | 9,460 | 10,360 | 11,280 | 12,150 | 17,200 |
|----|----------|-------|--------|--------|--------|--------|
|    |          | 9,450 | 10,340 | 11,260 | 12,170 |        |
|    | 6,020    | 9,470 | 10,310 | 11,250 | 12,160 | 16,940 |
| 4  | 6,020    | 9,450 | 10,350 | 11,250 | 12,120 | 17,070 |
|    |          | 9,450 | 10,330 | 11,210 | 12,130 |        |
|    | 5,950    | 9,350 | 10,250 | 11,300 | 12,050 | 17,000 |
| 5  | 5,950    | 9,430 | 10,250 | 11,300 | 12,050 | 17,000 |
|    |          | 9,430 | 10,250 | 11,300 | 12,050 |        |
|    | 6,016    | 9,513 | 10,370 | 11,275 | 12,222 | 17,120 |
| 6  | 6,031    | 9,513 | 10,336 | 11,266 | 12,222 | 17,194 |
|    |          | 9,505 | 10,386 | 11,275 | 12,220 |        |
|    | 5,730    | 9,350 | 10,230 | 11,440 | 12,080 | 17,010 |
| 7  | 5,730    | 9,430 | 10,220 | 11,090 | 12,030 | 16,920 |
|    |          | 9,460 | 10,220 | 11,080 | 11,930 |        |
|    | 5,990    | 9,400 | 10,340 | 11,160 | 12,110 | 17,080 |
| 8  | 6,000    | 9,440 | 10,320 | 11,150 | 12,090 | 17,110 |
|    |          | 9,440 | 10,360 | 11,210 | 12,090 |        |
|    | 6,031    | 9,508 | 10,428 | 11,289 | 12,180 | 17,089 |
| 9  | 6,019    | 9,478 | 10,406 | 11,293 | 12,215 | 17,084 |
|    | •        | 9,509 | 10,411 | 11,297 | 12,215 | ŕ      |
|    | 6,030    | 9,500 | 10,380 | 11,250 | 12,150 | 17,130 |
| 10 | 6,020    | 9,510 | 10,380 | 11,250 | 12,150 | 17,100 |
|    | •        | 9,510 | 10,380 | 11,250 | 12,160 | -      |
|    | 6,020    | 9,480 | 10,400 | 11,260 | 12,150 | 17,040 |
| 11 | 6,000    | 9,470 | 10,390 | 11,260 | 12,140 | 17,000 |
|    | <i>'</i> | 9,490 | 10,370 | 11,240 | 12,160 | ,      |
| L  |          |       |        |        |        |        |

# 2.5. Repeatability and reproducibility calculations

Repeatability and reproducibility calculations are carried out in compliance with the standard NF X 06-041, September 1983, ISO 5725. Table 4 presents the standard deviation per cell (laboratory x sample).

Table 4: Dispersion table (standard deviation in % vol.)

| Laboratory | C0     | V0     | V1     | V2     | V3     | P0     |
|------------|--------|--------|--------|--------|--------|--------|
| 1          | 0,0354 | 0,0252 | 0,0265 | 0,0173 | 0,0289 | 0,0000 |
| 2          | 0,0000 | 0,0058 | 0,3436 | 0,0100 | 0,0058 | 0,0000 |
| 3          | 0,0354 | 0,0058 | 0,0100 | 0,0115 | 0,0115 | 0,0071 |
| 4          | 0,0000 | 0,0115 | 0,0200 | 0,0231 | 0,0208 | 0,0919 |
| 5          | 0,0000 | 0,0462 | 0,0000 | 0,0000 | 0,0000 | 0,0000 |
| 6          | 0,0106 | 0,0046 | 0,0255 | 0,0052 | 0,0012 | 0,0523 |
| 7          | 0,0000 | 0,0569 | 0,0058 | 0,2050 | 0,0764 | 0,0636 |
| 8          | 0,0071 | 0,0231 | 0,0200 | 0,0321 | 0,0115 | 0,0212 |

15

OIV-MA-AS312-01A: R2009

| 9  | 0,0085 | 0,0176 | 0,0115 | 0,0040 | 0,0202 | 0,0035 |
|----|--------|--------|--------|--------|--------|--------|
| 10 | 0,0071 | 0,0058 | 0,0000 | 0,0000 | 0,0058 | 0,0212 |
| 11 | 0,0141 | 0,0100 | 0,0153 | 0,0115 | 0,0100 | 0,0283 |

Three cells presented strong dispersions (probability with Cochran test under 1%). These cells are represented in grey (Table 4).

For laboratory 7 and the V3 product, the standard deviation of 0.0764 is maintained despite the Cochran test because it is on the same high level as that observed at the same laboratory on the V0 product.

An examination of figures for each distillate leads us to eliminate (Table 3):

- laboratory 2, product V1, value 10.990,
- laboratory 7, product V2, value 11.440.

After eliminating these two values, the cell averages are calculated (laboratory x sample) (Table 5).

Table 5: Table of averages (averages in % vol.)

| Laboratory | C0     | V0     | V1      | V2      | V3      | P0      |
|------------|--------|--------|---------|---------|---------|---------|
| 1          | 5,9950 | 9,4733 | 10,3700 | 11,2700 | 12,1333 | 17,0800 |
| 2          | 6,0400 | 9,5033 | 10,3950 | 11,2800 | 12,2067 | 17,0500 |
| 3          | 5,9350 | 9,4567 | 10,3500 | 11,2733 | 12,1633 | 17,1950 |
| 4          | 6,0200 | 9,4567 | 10,3300 | 11,2367 | 12,1367 | 17,0050 |
| 5          | 5,9500 | 9,4033 | 10,2500 | 11,3000 | 12,0500 | 17,0000 |
| 6          | 6,0235 | 9,5103 | 10,3640 | 11,2720 | 12,2213 | 17,1570 |
| 7          | 5,7300 | 9,4133 | 10,2233 | 11,0850 | 12,0133 | 16,9650 |
| 8          | 5,9950 | 9,4267 | 10,3400 | 11,1733 | 12,0967 | 17,0950 |
| 9          | 6,0250 | 9,4983 | 10,4150 | 11,2930 | 12,2033 | 17,0865 |
| 10         | 6,0250 | 9,5067 | 10,3800 | 11,2500 | 12,1533 | 17,1150 |
| 11         | 6,0100 | 9,4800 | 10,3867 | 11,2533 | 12,1500 | 17,0200 |

The figures given by laboratory 7 are generally low (Table 5). In the case of cider the average for this laboratory is very far from the figures of the other laboratories

(associated probability to the Dixon test under 1 %). The results of this laboratory for this product are eliminated.

Table 6 presents the calculated repeatability and reproducibility.

Table 6: Calculation of repeatability and reproducibility

| Sample | P  | n  | TAV    | S2r      | S2L      | r     | R     |
|--------|----|----|--------|----------|----------|-------|-------|
| C0     | 10 | 20 | 6,002  | 0,000298 | 0,001033 | 0,049 | 0,103 |
| V0     | 11 | 33 | 9,466  | 0,000654 | 0,001255 | 0,072 | 0,124 |
| V1     | 11 | 32 | 10,344 | 0,000255 | 0,003485 | 0,045 | 0,173 |
| V2     | 11 | 32 | 11,249 | 0,000219 | 0,003113 | 0,042 | 0,163 |
| V3     | 11 | 33 | 12,139 | 0,000722 | 0,003955 | 0,076 | 0,194 |
| P0     | 11 | 22 | 17,070 | 0,001545 | 0,004154 | 0,111 | 0,214 |

Key:

p : number of laboratories retained

n : number of values retained

TAV : average alcoholic strength by volume (% vol.)

S2r : repeatability variation (% vol.)<sup>2</sup> S2L : interlaboratory variation (% vol.)<sup>2</sup>

r : repeatability (% vol.)
R : reproducibility (% vol.)

Reproducibility increases with the samples' alcoholic strength by volume (Figure 1). The increase in repeatability according to alcoholic strength by volume is less noticeable and global repeatability is calculated according to the average repeatability variation. As such, for the alcoholic strength by volume samples between 4 and 18% vol.,

Repeatability (r) = 0.067 (% vol.),

Reproducibility (R) = 0.0454 + 0.0105 x alcoholic strength by volume.

OIV-MA-AS312-01A: R2009

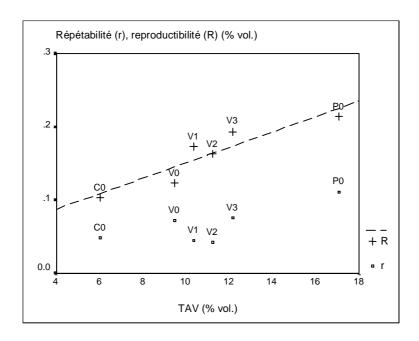



Figure 1: Repeatability and reproducibility according to alcoholic strength by volume

#### 2.6. Accuracy on additions carried out on wine

The regression line of alcoholic strength after the addition according to the volume of ethanol supplied, for a volume of 0 ml, an estimation of the initial alcoholic strength of product (Figure 2). This regression is carried out with average values for each laboratory (Table 5).

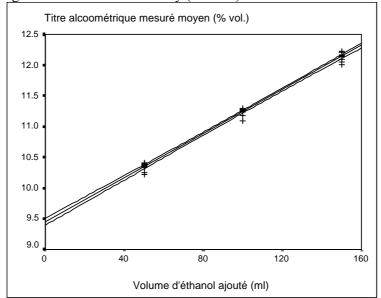



Figure 2: Regression of measures alcoholic strength by volume of added ethanol

Measurements carried out on initial products are not included in this estimation. This estimation is made up of the average of measurements taken on this product before additions; the intervals of relative confidence on these two estimations are calculated (Table 7).

**Table 7: Additions on products** 

| BI    | Average      | BS    | BI    | estimation with         | BS    |
|-------|--------------|-------|-------|-------------------------|-------|
|       | measurements |       |       | measurements            |       |
|       |              |       |       | on products + additions |       |
| 9,440 | 9,466        | 9,492 | 9,392 | 9,450                   | 9,508 |

*Key: BI: lower bound of confidence interval at 95%*BS: upper bound of confidence interval at 95%

The two confidence intervals cover a large overlapping spreading centre. Thanks to the measurements on doped samples, the alcoholic strength by volume of the initial product can be found.

#### 2.7. Conclusion of interlaboratory trials

The repeatability and the reproducibility indications by interlaboratory trials provide the following equations, for alcoholic strength by volume products between 4 to 18% vol.:

Repeatability (r) = 0.67 (% vol.),

Reproducibility (R) = 0.454 + 0.0105 x alcoholic strength by volume (% vol.).

The Horwitz indicators, Hor and HoR are weak (Table 8). These indicators provide good details of the method compared to the level of analyte measured.

Table 8: Table summary of method reliability

| Samples            | C0     | V0     | V1      | V2      | V3      | P0      |
|--------------------|--------|--------|---------|---------|---------|---------|
| n                  | 20     | 33     | 32      | 32      | 33      | 22      |
| p                  | 10     | 11     | 11      | 11      | 11      | 11      |
| Alcoholic strength | 6,0019 | 9,4662 | 10,3443 | 11,2492 | 12,1389 | 17,0699 |
| by volume          |        |        |         |         |         |         |
| r                  | 0,0489 | 0,0724 | 0,0452  | 0,0419  | 0,0760  | 0,1113  |
| sr                 | 0,0173 | 0,0256 | 0,0160  | 0,0148  | 0,0269  | 0,0393  |
| RSDr               | 0,2878 | 0,2702 | 0,1543  | 0,1316  | 0,2214  | 0,2303  |
| RSDrH              | 2,0159 | 1,8822 | 1,8573  | 1,8340  | 1,8131  | 1,7224  |
| Hor                | 0,1428 | 0,1436 | 0,0831  | 0,0718  | 0,1221  | 0,1337  |
| R                  | 0,1033 | 0,1237 | 0,1731  | 0,1634  | 0,1935  | 0,2136  |
| sR                 | 0,0365 | 0,0437 | 0,0612  | 0,0577  | 0,0684  | 0,0755  |
| RSDR               | 0,6080 | 0,4616 | 0,5912  | 0,5131  | 0,5634  | 0,4423  |
| RSDRH              | 3,0543 | 2,8519 | 2,8141  | 2,7788  | 2,7471  | 2,6097  |
| HoR                | 0,1991 | 0,1619 | 0,2101  | 0,1847  | 0,2051  | 0,1695  |

Key:

: number of values retained n: number of laboratories retained Alcoholic strength by volume: average rate (% vol.)

: repeatability (% vol.)

: Standard deviation of repeatability (% vol.) sr

Repeatability coefficient of variation ( sr x 100 / TAV) (%) RSDr

RSDrH : Horwitz repeatability coefficient of variation ( .0.66 x RSDRH) (%)

Horrat repeatability value (RSDr/RSDrH) Hor

Reproducibility (% vol.) R

: Reproducibility standard deviation (% vol.) sR

: Reproducibility coefficient of variation (sR x 100 / TAV) (%) **RSDR** 

RSDRH : Horwitz reproducibility coefficient of variation  $(2^{(1-0,5log(TAV))})$  (%)

HoR: Horrat reproducibility value ( RSDR/RSDRH)

Interlaboratory trials' measurements carried out on wine with additions enable us to find the value obtained before the addition. We respectively find 9.45 and 9.47% vol.

# **BIBLIOGRAPHY**

OIV, 1990. Recueil des méthodes internationales d'analyse des vins et des moûts, (Compendium of international methods of analysis of wine and musts) Office International de la Vigne et du Vin ; Paris.

Standard ISO 5725, page 7

# 4. C. Measurement of the alcoholic strength of wine by densimetry using hydrostatic balance (Resolution Oeno 24/2003 – 377/2009)

#### 1. METHOD OF MEASUREMENT

### 1.1 Strength and introduction

Measurement of alcoholic strength by volume should be determined before marketing notably to be in compliance with labelling rules.

Alcoholic strength by volume is equal to the number of litres of ethanol contained in 100 litres of wine measured at 20°C, referred to as "% vol.".

### 1.2 Safety precaution

Respect safety measures concerning the use of distillation apparatuses, manipulation of hydro-alcoholic solutions and cleaning products.

### 1.3 Object and field of application

The method of measurement is densimetry using a hydrostatic balance. In reference to regulatory provisions in force the trial temperature is set at 20°C.

# 1.4 Principle and definitions

The principle of this method involves firstly distilling wine volume by volume. The distilling method is described in the Compendium. Non volatile substances can be eliminated through distillation. Ethanol counterparts and ethanol found in esters are included in the alcoholic strength as they are found in the distillate.

Secondly, the volumetric weight of the distillate obtained is measured. The volumetric weight of a liquid at a given temperature is equal to the ratio of the weight over its volume:  $\rho=m/V$ , for wine, it is expressed in g/ml.

The alcoholic strength of wine can be measured by densimetry using a hydrostatic balance following the Archimedes principle by which any body plunged into a fluid undergoes a vertical push, from the bottom to the top, equal to the weight of the displaced fluid.

### 1.5 Reagents

Unless other wise indicated, only recognised analytical quality reagents should be used during the analysis with at least class 3 water corresponding to the definition of the standard ISO 3696:1987.

1.5.1 *Solution for washing float device (sodium hydroxide*, 30% m/v).

To prepare a 100 ml solution, weigh 30 g of sodium hydroxide and fill using 96% vol. ethanol.

# 1.6 Apparatus and material

current laboratory apparatus including:

- 1.6.1 Single-plate hydrostatic balance with 1 mg precision.
- 1.6.2 Floater with at least 20 ml volume, specifically adapted for the balance, suspended by a thread with a diameter less than or equal to 0.1 mm.
- 1.6.3 Cylindrical test tube with level indicator. The floater must entirely fill the test tube volume above the marker, only the slinging wire goes through the surface of the liquid. The cylindrical test tube should have an inside diameter at least above 6 mm of the floater.
- 1.6.4 Thermometer (or temperature measurement pipette) with degree and 10th of degree graduations, from  $10^{\circ}$ C to  $40^{\circ}$ C, calibrated to  $\pm 0.05^{\circ}$ C.
- 1.6.5 Calibrated weight by a recognized certification body.

#### 1.7 Procedure

After each measurement, the floater and the test tube must be cleaned with distilled water, wiped with soft laboratory paper which doesn't loose its fibres and rinsed with solution whose volumetric weight is to be determined. These measurements must be carried out once the apparatus has reached a stable level in order to limit alcohol loss through evaporation.

#### 1.7.1 Balance calibration

While balances usually have internal calibration systems, hydrostatic balances must be calibrated with controlled weights by an official certification body.

### 1.7.2 Floater calibration

1.7.2.1 Fill cylindrical test tube up to marker with bidistilled water (or an equivalent purity, for example microfiltered water with a conductivity of

- 18.2 M $\Omega$ /cm), whose temperature between 15°C to 25°C, but preferably at 20°C.
- 1.7.2.2 Plunge the floater and the thermometer into the liquid, shake, note down the volumetric weight on the apparatus and, if necessary, adjust the reading in order for it to be equal to the water measurement temperature.

#### 1.7.3 Control using a hydroalcoholic solution

- 1.7.3.1 Fill the cylindrical test tube up to the marker with a known titre of hydroalcoholic solution at a temperature between 15°C to 25°C, preferably at 20°C.
- 1.7.3.2 Plunge the floater and the thermometer into the liquid, shake, note down the volumetric weight on the apparatus (or the alcoholic strength if possible). The established alcoholic strength must be equal to the previously determined alcoholic strength.
- Note 2: This alcoholic strength solution can be replaced by bidistilled water for floater calibration.
- 1.7.4 Measure volumetric weight of the distillate (or alcoholic strength if possible)
- 1.7.4.1 Pour the sample for the trial in the cylindrical test tube up to the marker level.
- 1.7.4.2 Plunge the floater and the thermometer into the liquid, shake, note down the volumetric weight on the apparatus (or the alcoholic strength if possible. Note the temperature if the volumetric mass is measured at  $t^{\circ}C$  ( $\tilde{n}_{t}$ ).
- 1.7.4.3 Correct  $\tilde{n}_t$  using a volumetric weight table  $\tilde{n}_t$  of hydroalcoholic mixtures [Table II of Annex II of the Compendium of methods of analysis of the OIV].
- 1.7.5 Clean the floater and cylindrical test tube.
- 1.7.5.1 Plunge the floater into the wash solution in the test tube.
- 1.7.5.2 Allow to soak 1 hour while turning the floater regularly.
- 1.7.5.3 Rinse with tap water, then with distilled water.
- 1.7.5.4 Wipe with soft laboratory paper which doesn't loose its fibres.

Carry out these operations when the floater is used for the first time and then on a regular basis when necessary.

#### 1.7.6 Result

Using  $\tilde{n}_{20}$ , volumetric weight, calculate real alcoholic strength by using the table indicating volumetric alcoholic strength (% vol.) at 20°C according to volumetric weight at 20°C of hyrdoalcoholic mixtures. This is the international table adopted by the International Organisation of Legal Metrology in its recommendation number 22.

#### 2. COMPARISON OF MEASUREMENTS CARRIED OUT

using a hydrostatic balance with measurements obtained using an electronic density-meter (Annex A of the Compendium of International Methods of Analysis).

From samples whose alcoholic strength is between 4% vol. and 18% vol. the measurements of repeatability and reproducibility were performed after an inter-laboratory ring test. It is the comparison of the measurements of wine alcoholic strength of different samples using the hydrostatic balance and the electronic density-meter, including the repeatability and reproducibility values derived from pluri-annual intercomparison test trials performed on a large scale.

- 2.1 **Samples:** wines of different density and alcoholic strengths prepared monthly on an industrial scale, taken from a bottled stock stored under normal conditions, and supplied as anonymous products to laboratories.
- 2.2 **Laboratories:** laboratories participating into the monthly ring test organised by Unione Italiana Vini Verona, (Italy) according to ISO 5725 (UNI 9225) regulation and the 'International Protocol of Proficiency test for chemical analysis laboratories' established by AOAC, ISO and IUPAC (J. AOAC Intern., **1993**, 74/4) and according to guidelines ISO 43 and ILAC G13. An annual report is supplied by the cited company to all participants.

# 2.3 Apparatus:

- 2.3.1 Electronic hydrostatic balance (whose precision allows to give the 5<sup>th</sup> decimal of density) eventually equipped with a data treatment device.
- 2.3.2 Electronic density-meter eventually equipped with an autosampler.

### 2.4 Analyses

According to method validation rules (resolution OENO 6/99), each sample is analysed twice consecutively to determine the alcoholic strength.

#### 2.5 Results

Table 1 shows the results of the measurements obtained by the laboratories using the hydrostatic balance.

Table 2 shows the results obtained by the laboratories using an electronic densimeter.

#### 2.6 Evaluations of the results

2.6.1 The trial results were examined for evidence of individual systematic error (p<0.025) using Cochran's and Grubbs' tests successively, by procedures described in the internationally agreed ["Protocol for the Design, Conduct and Interpretation of Method-Performance Studies" Ed W Horwitz, Pure and Applied Chemistry, 1995, 67, (2), 331-343.].

# 2.6.2 Repeatability (r) and reproducibility (R)

Calculations for repeatability (r) and reproducibility (R) as defined by the protocol were carried out on the results remaining after the removal of outliers. When assessing a new method there is often no validated reference or statutory method with which to compare precision criteria, hence it is useful to compare the precision data obtained from collaborative trials with "predicted" levels of precision. These "predicted" levels are calculated from the Horwitz formula. Comparison of the trial results and the predicted levels indicate as to whether the method is sufficiently precise for the level of analyte being measured.

The predicted Horwitz value is calculated from the Horwitz formula.

$$RSD_R = 2^{(1-0.5 \log C)}$$

where C = measured concentration of analyte expressed in decimals. (e.g. 1 g/100g = 0.01) [Horwitz, W., Analytical Chemistry, 1982, 54, 67A-76A.].

The Horrat value gives a comparison of the actual precision measured with the precision predicted by the Horwitz formula for the method and at that particular level of concentration of the analyte. It is calculated as follows:  $Ho_R = RSD_R(measured)/RSD_R(Horwitz)$ 

### 2.6.3 Interlaboratory precision

A Horrat value of 1 usually indicates satisfactory inter-laboratory precision, whereas a value of more than 2 usually normally indicates unsatisfactory precision, i.e. one that is too variable for most analytical purposes or where the variation obtained is greater than that expected for the type of method employed. Ho<sub>r</sub> is also calculated, and used to assess intra-laboratory precision, using the following approximation:  $RSD_r(Horwitz) = 0.66 \ RSD_R(Horwitz) \ (this assumes the approximation \ r = 0.66 \ R).$ 

Table 3 shows the differences between the measurements obtained by

laboratories using an electronic densimeter and those using a hydrostatic balance. Excluding the sample of 2000/3 with very low alcohol strength and for which both techniques show poor reproducibility, a very good concordance is generally observed for the other samples.

### 2.6.4 Fidelity parameters

Table 4 shows the averaged overall fidelity parameters computed from all monthly trials carried out from January 1999 until May 2001.

In particular:

Repeatability (r)= 0.074 (% vol.) for the hydrostatic balance and 0.061 (% vol.) for electronic densitometry;

Reproducibility (R)= 0.229 (% vol.) for the hydrostatic balance and 0.174 (% vol.) for electronic densimetry, this latter value is concordant to the value estimated for the electronic densimetry from the OIV Compendium of International Methods of Analysis;

#### 2.7 Conclusion

The results concerning the determination of the alcoholic strength of a large range of wines show that the measurements carried out with the hydrostatic balance are concordant with those carried out by electronic densimetry using a flexion resonator and that the validation parameter values are similar for both methods.

### **Bibliography**

- F.V. n. 1096; Cabanis Marie-Thérèse., Cassanas Geneviéve, Raffy Joëlle, Cabanis J.C., 1999: Validation de la mesure du titre alcoolometrique volumique;
- Cabanis Marie-Thérèse., Cassanas Geneviéve, Raffy Joëlle, Cabanis J.C.,
   1999: Intérêt de la balance hydrostatique "nouvelle génération" pour la détermination du titre alcoométrique des vins et des boissons spiritueuses. Rev. Franç. Œnol., 177/juillet-août, 28-31;
- Versini G., Larcher R., 2002: Comparison of wine density and alcoholic strenght measurement by hydrostatic balance and electronic density–meter. Communication at the OIV Sub-commission of analytical methods, Paris, 13-15 March 2002
- OIV, Recueil des méthodes internationales d'analyse des vins et des moûts, Office International de la Vigne et du Vin; Paris;
- 'International Protocol of Proficiency test for chemical analysis laboratories'., J. AOAC Intern., 1993, 74/4
- normes ISO 5725 et guides ISO 43;
- resolution Oeno 6/99;
- Horwitz W., 1995. Protocol for the design, conduct and interpretation of method-performance studies, Pure and Applied Chemistry, 67/2, 331-343.

#### Legend:

mean the mean of all the data used in the statistical analysis

n total number of sets of data submitted

nc number of results excluded from statistical analysis due to non-compliance outliers number of results excluded from statistical analysis due to determination as outliers by either Cochran's or Grubbs' tests

 $n_1$  number of results used in statistical analysis

r repeatability limit

 $S_r$  the standard deviation of the repeatability

 $RSD_r$  the relative standard deviation of the repeatability  $(S_r \times 100/MEAN)$ .

 $Ho_r$  the HORRAT value for repeatability is the observed RSD<sub>r</sub> divided by the RSD<sub>r</sub> value estimated from the Horwitz formula using the approximation r = 0.66R

R reproducibility limit

 $S_R$  the standard deviation of the reproducibility

 $Ho_R$  the HORRAT value for reproducibility is the observed  $RSD_R$  value divided by the  $RSD_R$  value calculated from

 $Ho_R = RSD_R (measured)/RSD_R$ 

|         |        |    |          |    |        |        |        |        |        |        |         |      | no. of     | critical difference |
|---------|--------|----|----------|----|--------|--------|--------|--------|--------|--------|---------|------|------------|---------------------|
|         | MEAN   | n  | outliers | n1 | r      | sr     | RSDr   | Hor    | R      | sR     | RSDR    | HoR  | replicates | CrD95               |
| 1999/1  | 11.043 | 17 | 1        | 16 | 0.0571 | 0.0204 | 0.1846 | 0.1004 | 0.1579 | 0.0564 | 0.5107  | 0.18 | 2          | 0.1080              |
| 1999/2  | 11.247 | 14 | 1        | 13 | 0.0584 | 0.0208 | 0.1854 | 0.1011 | 0.1803 | 0.0644 | 0.5727  | 0.21 | 2          | 0.1241              |
| 1999/3  | 11.946 | 16 | 0        | 16 | 0.0405 | 0.0145 | 0.1211 | 0.0666 | 0.1593 | 0.0569 | 0.4764  | 0.17 | 2          | 0.1108              |
| 1999/4  | 7.653  | 17 | 1        | 16 | 0.0502 | 0.0179 | 0.2344 | 0.1206 | 0.1537 | 0.0549 | 0.7172  | 0.24 | 2          | 0.1057              |
| 1999/5  | 11.188 | 17 | 0        | 17 | 0.0871 | 0.0311 | 0.2780 | 0.1515 | 0.2701 | 0.0965 | 0.8622  | 0.31 | 2          | 0.1860              |
| 1999/6  | 11.276 | 19 | 0        | 19 | 0.0846 | 0.0302 | 0.2680 | 0.1462 | 0.2957 | 0.1056 | 0.9365  | 0.34 | 2          | 0.2047              |
| 1999/7  | 8.018  | 17 | 0        | 17 | 0.0890 | 0.0318 | 0.3964 | 0.2054 | 0.2573 | 0.0919 | 1.1462  | 0.39 | 2          | 0.1764              |
| 1999/9  | 11.226 | 17 | 0        | 17 | 0.0580 | 0.0207 | 0.1846 | 0.1423 | 0.2796 | 0.0999 | 0.8896  | 0.45 | 2          | 0.1956              |
| 1999/10 | 11.026 | 17 | 0        | 17 | 0.0606 | 0.0216 | 0.1961 | 0.1066 | 0.2651 | 0.0947 | 0.8588  | 0.31 | 2          | 0.1850              |
| 1999/11 | 7.701  | 16 | 1        | 15 | 0.0643 | 0.0229 | 0.2980 | 0.1535 | 0.2330 | 0.0832 | 1.0805  | 0.37 | 2          | 0.1616              |
| 1999/12 | 10.987 | 17 | 2        | 15 | 0.0655 | 0.0234 | 0.2128 | 0.1156 | 0.1258 | 0.0449 | 0.4089  | 0.15 | 2          | 0.0827              |
| 2000/1  | 11.313 | 16 | 0        | 16 | 0.0986 | 0.0352 | 0.3113 | 0.1699 | 0.2577 | 0.0920 | 0.8135  | 0.29 | 2          | 0.1754              |
| 2000/2  | 11.232 | 17 | 0        | 17 | 0.0859 | 0.0307 | 0.2731 | 0.1489 | 0.2535 | 0.0905 | 0.8060  | 0.29 | 2          | 0.1740              |
| 2000/3  | 0.679  | 10 | 0        | 10 | 0.0680 | 0.0243 | 3.5773 | 1.2783 | 0.6529 | 0.2332 | 34.3395 | 8.10 | 2          | 0.4604              |
| 2000/4  | 11.223 | 18 | 0        | 18 | 0.0709 | 0.0253 | 0.2257 | 0.1230 | 0.2184 | 0.0780 | 0.6951  | 0.25 | 2          | 0.1503              |
| 2000/5  | 7.439  | 19 | 1        | 18 | 0.0630 | 0.0225 | 0.3023 | 0.1549 | 0.1522 | 0.0544 | 0.7307  | 0.25 | 2          | 0.1029              |
| 2000/6  | 11.181 | 19 | 0        | 19 | 0.0536 | 0.0191 | 0.1710 | 0.0932 | 0.2783 | 0.0994 | 0.8890  | 0.32 | 2          | 0.1950              |
| 2000/7  | 10.858 | 16 | 0        | 16 | 0.0526 | 0.0188 | 0.1731 | 0.0939 | 0.1827 | 0.0653 | 0.6011  | 0.22 | 2          | 0.1265              |
| 2000/9  | 12.031 | 17 | 1        | 16 | 0.0602 | 0.0215 | 0.1787 | 0.0985 | 0.2447 | 0.0874 | 0.7263  | 0.26 | 2          | 0.1704              |
| 2000/10 | 11.374 | 18 | 0        | 18 | 0.0814 | 0.0291 | 0.2555 | 0.1395 | 0.2701 | 0.0965 | 0.8482  | 0.31 | 2          | 0.1866              |
| 2000/11 | 7.644  | 18 | 0        | 18 | 0.0827 | 0.0295 | 0.3863 | 0.1988 | 0.2289 | 0.0817 | 1.0694  | 0.36 | 2          | 0.1565              |
| 2000/12 | 11.314 | 19 | 1        | 18 | 0.0775 | 0.0277 | 0.2447 | 0.1336 | 0.2421 | 0.0864 | 0.7641  | 0.28 | 2          | 0.1667              |
| 2001/1  | 11.415 | 19 | 0        | 19 | 0.0950 | 0.0339 | 0.2971 | 0.1623 | 0.2410 | 0.0861 | 0.7539  | 0.27 | 2          | 0.1636              |
| 2001/2  | 11.347 | 19 | 0        | 19 | 0.0792 | 0.0283 | 0.2493 | 0.1361 | 0.1944 | 0.0694 | 0.6119  | 0.22 | 2          | 0.1316              |
| 2001/3  | 11.818 | 16 | 0        | 16 | 0.0659 | 0.0235 | 0.1990 | 0.1093 | 0.2636 | 0.0941 | 0.7965  | 0.29 | 2          | 0.1834              |
| 2001/4  | 11.331 | 17 | 0        | 17 | 0.1067 | 0.0381 | 0.3364 | 0.1836 | 0.1895 | 0.0677 | 0.5971  | 0.22 | 2          | 0.1229              |
| 2001/5  | 8.063  | 19 | 1        | 18 | 0.0782 | 0.0279 | 0.3465 | 0.1797 | 0.1906 | 0.0681 | 0.8442  | 0.29 | 2          | 0.1290              |
|         |        |    |          |    |        |        |        |        |        |        |         |      |            |                     |

**Table 2: Electronic Densimetry (ED)** 

|          | MEAN n1 | n  | outliers | n1 | r      | sr     | RSDr   | Hor    | R      | sR     | RSDR    | HoR   | no. of replicates | critical difference<br>CrD95 |
|----------|---------|----|----------|----|--------|--------|--------|--------|--------|--------|---------|-------|-------------------|------------------------------|
| D1999/1  | 11.019  | 18 | 1        | 17 | 0.0677 | 0.0242 | 0.2196 | 0.1193 | 0.1996 | 0.0713 | 0.6470  | 0.23  | 2                 | 0.1370                       |
| D1999/2  | 11.245  | 19 | 2        | 17 | 0.0448 | 0.0160 | 0.1423 | 0.0776 | 0.1311 | 0.0468 | 0.4165  | 0.15  | 2                 | 0.0900                       |
| D1999/3  | 11.967  | 21 | 0        | 21 | 0.0701 | 0.0250 | 0.2091 | 0.1151 | 0.1552 | 0.0554 | 0.4631  | 0.17  | 2                 | 0.1040                       |
| D1999/4  | 7.643   | 19 | 1        | 18 | 0.0610 | 0.0218 | 0.2852 | 0.1467 | 0.1340 | 0.0479 | 0.6262  | 0.21  | 2                 | 0.0897                       |
| D1999/5  | 11.188  | 21 | 3        | 18 | 0.0260 | 0.0093 | 0.0829 | 0.0452 | 0.2047 | 0.0731 | 0.6536  | 0.24  | 2                 | 0.1442                       |
| D1999/6  | 11.303  | 21 | 0        | 21 | 0.0652 | 0.0233 | 0.2061 | 0.1125 | 0.1466 | 0.0523 | 0.4631  | 0.17  | 2                 | 0.0984                       |
| D1999/7  | 8.026   | 21 | 0        | 21 | 0.0884 | 0.0316 | 0.3935 | 0.2039 | 0.1708 | 0.0610 | 0.7600  | 0.26  | 2                 | 0.1124                       |
| D1999/9  | 11.225  | 17 | 0        | 17 | 0.0372 | 0.0133 | 0.1183 | 0.0645 | 0.1686 | 0.0602 | 0.5366  | 0.19  | 2                 | 0.1178                       |
| D1999/10 | 11.011  | 19 | 0        | 19 | 0.0915 | 0.0327 | 0.2969 | 0.1613 | 0.1723 | 0.0615 | 0.5588  | 0.20  | 2                 | 0.1129                       |
| D1999/11 | 7.648   | 21 | 1        | 20 | 0.0615 | 0.0220 | 0.2872 | 0.1478 | 0.1538 | 0.0549 | 0.7183  | 0.24  | 2                 | 0.1043                       |
| D1999/12 | 10.999  | 16 | 1        | 15 | 0.0428 | 0.0153 | 0.1389 | 0.0755 | 0.2015 | 0.0720 | 0.6541  | 0.23  | 2                 | 0.1408                       |
| D2000/1  | 11.248  | 22 | 1        | 21 | 0.0697 | 0.0249 | 0.2212 | 0.1206 | 0.1422 | 0.0508 | 0.4516  | 0.16  | 2                 | 0.0944                       |
| D2000/2  | 11.240  | 19 | 3        | 16 | 0.0448 | 0.0160 | 0.1424 | 0.0776 | 0.1619 | 0.0578 | 0.5145  | 0.19  | 2                 | 0.1123                       |
| D2000/3  | 0.526   | 12 | 1        | 11 | 0.0327 | 0.0117 | 2.2185 | 0.7630 | 0.9344 | 0.3337 | 63.4009 | 14.39 | 2                 | 0.6605                       |
| D2000/4  | 11.225  | 19 | 1        | 18 | 0.0476 | 0.0170 | 0.1514 | 0.0825 | 0.1350 | 0.0482 | 0.4295  | 0.15  | 2                 | 0.0924                       |
| D2000/5  | 7.423   | 21 | 0        | 21 | 0.0628 | 0.0224 | 0.3019 | 0.1547 | 0.2635 | 0.0941 | 1.2677  | 0.43  | 2                 | 0.1836                       |
| D2000/6  | 11.175  | 23 | 2        | 21 | 0.0606 | 0.0217 | 0.1938 | 0.1056 | 0.1697 | 0.0606 | 0.5424  | 0.20  | 2                 | 0.1161                       |
| D2000/7  | 10.845  | 21 | 5        | 16 | 0.0440 | 0.0157 | 0.1449 | 0.0786 | 0.1447 | 0.0517 | 0.4766  | 0.17  | 2                 | 0.0999                       |
| D2000/9  | 11.983  | 22 | 1        | 21 | 0.0841 | 0.0300 | 0.2507 | 0.1380 | 0.2410 | 0.0861 | 0.7183  | 0.26  | 2                 | 0.1651                       |
| D2000/10 | 11.356  | 22 | 1        | 21 | 0.0635 | 0.0227 | 0.1997 | 0.1090 | 0.1865 | 0.0666 | 0.5866  | 0.21  | 2                 | 0.1280                       |
| D2000/11 | 7.601   | 27 | 0        | 27 | 0.0521 | 0.0186 | 0.2448 | 0.1258 | 0.1685 | 0.0602 | 0.7916  | 0.27  | 2                 | 0.1162                       |
| D2000/12 | 11.322  | 25 | 1        | 24 | 0.0476 | 0.0170 | 0.1503 | 0.0820 | 0.1594 | 0.0569 | 0.5028  | 0.18  | 2                 | 0.1102                       |
| D2001/1  | 11.427  | 29 | 0        | 29 | 0.0706 | 0.0252 | 0.2207 | 0.1206 | 0.1526 | 0.0545 | 0.4771  | 0.17  | 2                 | 0.1020                       |
| D2001/2  | 11.320  | 29 | 1        | 28 | 0.0675 | 0.0241 | 0.2128 | 0.1161 | 0.1570 | 0.0561 | 0.4952  | 0.18  | 2                 | 0.1057                       |
| D2001/3  | 11.826  | 34 | 1        | 33 | 0.0489 | 0.0175 | 0.1476 | 0.0811 | 0.1762 | 0.0629 | 0.5322  | 0.19  | 2                 | 0.1222                       |
| D2001/4  | 11.339  | 31 | 2        | 29 | 0.0639 | 0.0228 | 0.2012 | 0.1099 | 0.1520 | 0.0543 | 0.4788  | 0.17  | 2                 | 0.1026                       |
| D2001/5  | 8.058   | 28 | 0        | 28 | 0.0473 | 0.0169 | 0.2098 | 0.1088 | 0.2025 | 0.0723 | 0.8976  | 0.31  | 2                 | 0.1412                       |

Table 3: Comparison of results between hydrostatic balance and electronic densimetry

|         | MEAN (HB) | n  | outliers | n1 |                             | MEAN (ED)                   | n   | outliers | n1 | ΔΤΑV(HB-EC |
|---------|-----------|----|----------|----|-----------------------------|-----------------------------|-----|----------|----|------------|
| 1999/1  | 11.043    | 17 | 1        | 16 | D1999/1                     | 11.019                      | 18  | 1        | 17 | 0.024      |
| 1999/2  | 11.247    | 14 | 1        | 13 | D1999/2                     | 11.245                      | 19  | 2        | 17 | 0.024      |
| 1999/3  | 11.946    | 16 | 0        | 16 | D1999/3                     | 11.967                      | 21  | 0        | 21 | -0.021     |
| 1999/4  | 7.653     | 17 | 1        | 16 | D1999/4                     | 7.643                       | 19  | 1        | 18 | 0.010      |
| 1999/5  | 11.188    | 17 | 0        | 17 | D1999/5                     | 11.188                      | 21  | 3        | 18 | 0.000      |
| 1999/6  | 11.100    | 19 | 0        | 19 | D1999/6                     | 11.303                      | 21  | 0        | 21 | -0.028     |
| 1999/7  | 8.018     | 17 | 0        | 17 | D1999/7                     | 8.026                       | 21  | 0        | 21 | -0.028     |
| 1999/9  | 11.226    | 17 | 0        | 17 | D1999/9                     | 11.225                      | 17  | 0        | 17 | 0.002      |
| 1999/10 | 11.026    | 17 | 0        | 17 | D1999/10                    | 11.011                      | 19  | 0        | 19 | 0.002      |
| 1999/11 | 7.701     | 16 | 1        | 15 | D1999/11                    | 7.648                       | 21  | 1        | 20 | 0.052      |
| 1999/12 | 10.987    | 17 | 2        | 15 | D1999/12                    | 10.999                      | 16  | 1        | 15 | -0.013     |
| 2000/1  | 11.313    | 16 | 0        | 16 | D2000/1                     | 11.248                      | 22  | 1        | 21 | 0.065      |
| 2000/1  | 11.232    | 17 | 0        | 17 | D2000/1                     | 11.240                      | 19  | 3        | 16 | -0.008     |
| 2000/3  | 0.679     | 10 | 0        | 10 | D2000/2                     | 0.526                       | 12  | 1        | 11 | * 0.153    |
| 2000/4  | 11.223    | 18 | 0        | 18 | D2000/4                     | 11.225                      | 19  | 1        | 18 | -0.002     |
| 2000/5  | 7.439     | 19 | 1        | 18 | D2000/5                     | 7.423                       | 21  | 0        | 21 | 0.016      |
| 2000/6  | 11.181    | 19 | 0        | 19 | D2000/6                     | 11.175                      | 23  | 2        | 21 | 0.006      |
| 2000/7  | 10.858    | 16 | 0        | 16 | D2000/7                     | 10.845                      | 21  | 5        | 16 | 0.013      |
| 2000/9  | 12.031    | 17 | 1        | 16 | D2000/9                     | 11.983                      | 22  | 1        | 21 | 0.049      |
| 2000/10 | 11.374    | 18 | 0        | 18 | D2000/10                    | 11.356                      | 22  | 1        | 21 | 0.018      |
| 2000/11 | 7.644     | 18 | 0        | 18 | D2000/11                    | 7.601                       | 27  | 0        | 27 | 0.043      |
| 2000/12 | 11.314    | 19 | 1        | 18 | D2000/12                    | 11.322                      | 25  | 1        | 24 | -0.008     |
| 2001/1  | 11.415    | 19 | 0        | 19 | D2001/1                     | 11.427                      | 29  | 0        | 29 | -0.012     |
| 2001/2  | 11.347    | 19 | 0        | 19 | D2001/2                     | 11.320                      | 29  | 1        | 28 | 0.027      |
| 2001/3  | 11.818    | 16 | 0        | 16 | D2001/3                     | 11.826                      | 34  | 1        | 33 | -0.008     |
| 2001/4  | 11.331    | 17 | 0        | 17 | D2001/4                     | 11.339                      | 31  | 2        | 29 | -0.008     |
| 2001/5  | 8.063     | 19 | 1        | 18 | D2001/5                     | 8.058                       | 28  | 0        | 28 | 0.004      |
|         |           |    |          |    | Average difference/ Δ TA\   |                             |     |          |    | 0.014      |
|         |           |    |          |    | standard deviation on diffe | , ,                         |     |          |    | 0.036      |
|         |           |    |          | *  |                             | into account (very low grad | de) |          |    |            |

**Table 4: Fidelity parameters** 

| MEAN                            | Hydrostatic balance | Electronic densimeter |
|---------------------------------|---------------------|-----------------------|
| n1                              | 441                 | 557                   |
| Weighted repeatability variance | 0.309               | 0.267                 |
| r<br>sr                         | 0.074<br>0.026      | 0.061<br>0.022        |
| Weighted reproducibility        |                     |                       |
| variance                        | 2.948               | 2.150                 |
| R                               | 0.229               | 0.174                 |
| sR                              | 0.082               | 0.062                 |

#### BIBLIOGRAPHY

#### - Distillation:

HANAK A.. Chem. Zgt.. 1932. 56. 984.

COLOMBIER L.. CLAIR E.. Ann. Fals. Fraudes. 1936. 29. 411.

POZZI-ESCOT E.. Ind. Agr. Aliment.. 1949. 66. 119.

JAULMES P.. Analyse des vins. 1951. 49.

SCHNEYDER J., Mitt. Klosterneuburg, Rebe und Wein. 1960. 10. 228.

SCHNEYDER J., KASCHNITZ L., Mitt. Klosterneuburg. Rebe und Wein. 1965. 15, 132.

#### - Pycnométrie:

JAULMES P.. Analyse des vins. 1951. 67.

JAULMES P.. Trav. Soc. Pharm. Montpellier. 1952. 12. 154.

JAULMES P.. Ann. Fals. Fraudes. 1953. 46. 84; 1954. 47. 191.

JAULMES P., CORDIER Mlle S., *Trav. Soc. Pharm. Montpellier.* 1956. **16.** 115; 1960. **20.** 137

JAULMES P., BRUN Mme S., Ann. Fals. Exp. Chim., 1963. 56, 129.

#### - Tables alcoométriques:

TABLES ALCOOMETRIQUES FRANCAISES. J.O. Républ. française. 30 déc. 1884. 6895.

WINDISCH K.. d'après LUNGE G.. BERL E.. Chem. techn. Untersuchungs Methoden.

Berlin 1924. 7e éd., 1893. 4. 274.

OSBORNE N.S.. MCKELVY E.C.. BEARCE H.W.. Bull. Bur. of Standards. Washington. 1913 9, 328

FROST A.V.. Recherches dans le domaine du poids spécifique des mélanges d'alcool éthylique et d'eau. Institut des réactifs chimiques purs. U.R.S.S.. 1930. No. 9. d'après J. SPAEPEN.

HEIDE C. von der. MANDLEN H.. Z. Untersuch. Lebensm.. 1933. 66. 338.

KOYALOVICS B.. 8e Conférence générale des Poids et Mesures. Moscou 1933.

FERTMANN G.I.. *Tables de renseignements pour le contrôle de la fabrication de l'alcool.* Pischerpoomizdat. Moscou 1940.

REICHARD O.. Neue Alkohol u. Extract.. Tafel 20°/20°. Verlag Hans Carl. Nürnberg 1951.

JAULMES P., MARIGNAN R., Ann. Fals. Fraudes. 1953. 46. 208 et 336.

SPAEPEN J.. Rev. de Métrologie. 1955. 411; Bull. belge de Métrologie. 1955. numéro d'avril.

JAULMES P.. BRUN Mme S.. Ann. Fals. Exp. Chim.. 1963. 46. 143; 1965. 48. 58;

1966. **49.** 35; 1967. **50.** 101-147; Trav. Soc. Pharm. Montpellier. 1966. **26.** 37 et 111.

JAULMES P., MARIGNAN R., Bull. O.I.V., 1953, 274, 28, 32,

JAULMES P., BRUN Mme S., TEP Y., Trav. Soc. Pharm., 1968. 28. 111.

KAWASAKI T.. MINOVA Z.. INAMATSU T.. A new alcohometric specific gravity table. National Research of Metrology. Tokio 1967.

TEP Y.. Etude d'une table alcoométrique internationale. Thèse Doc. Pharm. Montpellier. 1968